1 \(\left(\frac{1}{2}, \pm 2\right)\)
2 \((1, \pm 2 \sqrt{2})\)
3 \((2, \pm 4)\)
4 None of these
Explanation:
C Given,
\(\mathrm{y}^2=8 \mathrm{x}=4(2)(\mathrm{x})\)
Comparing it with the general equation of parabola \(\mathrm{y}^2=\)
\(4 \mathrm{ax}\), we get -
\(a=2\)
Let the require point be \((\mathrm{x}, \mathrm{y})\)
\(\therefore\) Focal distance \(=|\mathrm{x}+\mathrm{a}|=4\)
\(|\mathrm{x}+2|=4\)
\(\mathrm{x}+2= \pm 4\)
\(\mathrm{x}=2,-6\)
But, \(\mathrm{x} \neq-6\)
So,
For \(\mathrm{x}=2, \mathrm{y}^2=8 \times 2\)
\(\mathrm{y}^2=16\)
\(y= \pm 4\)
Hence, the coordinate of the points are \((2, \pm 4)\)