Standard Equation of Parabola (parametric form)
Parabola

120067 If the parabola \(x^2=4 a y\) passes through the point \((2,1)\), then the length of the latus rectum is

1 4
2 2
3 8
4 1
Parabola

120068 The length of latus rectum of the parabola \(4 y^2+3 x+3 y+1=0\) is

1 \(\frac{4}{3}\)
2 7
3 12
4 \(\frac{3}{4}\)
Parabola

120069 If \(x=t^2+2\) and \(y=2 t\) represent the parametric equation of the parabola then the equation of parabola in cartesian from is.

1 \((x-2)^2=4 y\)
2 \(x^2=4(y-2)\)
3 \((y-2)^2=4 x\)
4 \(y^2=4(x-2)\)
Parabola

120070 Let \(S\) be the focus of the parabola \(y^2=8 x\) and let \(P Q\) be the common chord of the circle \(x^2+y^2-2 x-4 y=0\) and the given parabola. The area of \(\triangle \mathrm{PQS}\) is

1 4 sq units
2 3 sq units
3 2 sq units
4 8 sq units
Parabola

120071 The parametric equation of a parabola is \(x=t^2\) \(+1, y=2 t+1\). The Cartesian equation of its directrix is

1 \(y=0\)
2 \(x=-1\)
3 \(x=0\)
4 \(x-1=0\)
Parabola

120067 If the parabola \(x^2=4 a y\) passes through the point \((2,1)\), then the length of the latus rectum is

1 4
2 2
3 8
4 1
Parabola

120068 The length of latus rectum of the parabola \(4 y^2+3 x+3 y+1=0\) is

1 \(\frac{4}{3}\)
2 7
3 12
4 \(\frac{3}{4}\)
Parabola

120069 If \(x=t^2+2\) and \(y=2 t\) represent the parametric equation of the parabola then the equation of parabola in cartesian from is.

1 \((x-2)^2=4 y\)
2 \(x^2=4(y-2)\)
3 \((y-2)^2=4 x\)
4 \(y^2=4(x-2)\)
Parabola

120070 Let \(S\) be the focus of the parabola \(y^2=8 x\) and let \(P Q\) be the common chord of the circle \(x^2+y^2-2 x-4 y=0\) and the given parabola. The area of \(\triangle \mathrm{PQS}\) is

1 4 sq units
2 3 sq units
3 2 sq units
4 8 sq units
Parabola

120071 The parametric equation of a parabola is \(x=t^2\) \(+1, y=2 t+1\). The Cartesian equation of its directrix is

1 \(y=0\)
2 \(x=-1\)
3 \(x=0\)
4 \(x-1=0\)
Parabola

120067 If the parabola \(x^2=4 a y\) passes through the point \((2,1)\), then the length of the latus rectum is

1 4
2 2
3 8
4 1
Parabola

120068 The length of latus rectum of the parabola \(4 y^2+3 x+3 y+1=0\) is

1 \(\frac{4}{3}\)
2 7
3 12
4 \(\frac{3}{4}\)
Parabola

120069 If \(x=t^2+2\) and \(y=2 t\) represent the parametric equation of the parabola then the equation of parabola in cartesian from is.

1 \((x-2)^2=4 y\)
2 \(x^2=4(y-2)\)
3 \((y-2)^2=4 x\)
4 \(y^2=4(x-2)\)
Parabola

120070 Let \(S\) be the focus of the parabola \(y^2=8 x\) and let \(P Q\) be the common chord of the circle \(x^2+y^2-2 x-4 y=0\) and the given parabola. The area of \(\triangle \mathrm{PQS}\) is

1 4 sq units
2 3 sq units
3 2 sq units
4 8 sq units
Parabola

120071 The parametric equation of a parabola is \(x=t^2\) \(+1, y=2 t+1\). The Cartesian equation of its directrix is

1 \(y=0\)
2 \(x=-1\)
3 \(x=0\)
4 \(x-1=0\)
Parabola

120067 If the parabola \(x^2=4 a y\) passes through the point \((2,1)\), then the length of the latus rectum is

1 4
2 2
3 8
4 1
Parabola

120068 The length of latus rectum of the parabola \(4 y^2+3 x+3 y+1=0\) is

1 \(\frac{4}{3}\)
2 7
3 12
4 \(\frac{3}{4}\)
Parabola

120069 If \(x=t^2+2\) and \(y=2 t\) represent the parametric equation of the parabola then the equation of parabola in cartesian from is.

1 \((x-2)^2=4 y\)
2 \(x^2=4(y-2)\)
3 \((y-2)^2=4 x\)
4 \(y^2=4(x-2)\)
Parabola

120070 Let \(S\) be the focus of the parabola \(y^2=8 x\) and let \(P Q\) be the common chord of the circle \(x^2+y^2-2 x-4 y=0\) and the given parabola. The area of \(\triangle \mathrm{PQS}\) is

1 4 sq units
2 3 sq units
3 2 sq units
4 8 sq units
Parabola

120071 The parametric equation of a parabola is \(x=t^2\) \(+1, y=2 t+1\). The Cartesian equation of its directrix is

1 \(y=0\)
2 \(x=-1\)
3 \(x=0\)
4 \(x-1=0\)
Parabola

120067 If the parabola \(x^2=4 a y\) passes through the point \((2,1)\), then the length of the latus rectum is

1 4
2 2
3 8
4 1
Parabola

120068 The length of latus rectum of the parabola \(4 y^2+3 x+3 y+1=0\) is

1 \(\frac{4}{3}\)
2 7
3 12
4 \(\frac{3}{4}\)
Parabola

120069 If \(x=t^2+2\) and \(y=2 t\) represent the parametric equation of the parabola then the equation of parabola in cartesian from is.

1 \((x-2)^2=4 y\)
2 \(x^2=4(y-2)\)
3 \((y-2)^2=4 x\)
4 \(y^2=4(x-2)\)
Parabola

120070 Let \(S\) be the focus of the parabola \(y^2=8 x\) and let \(P Q\) be the common chord of the circle \(x^2+y^2-2 x-4 y=0\) and the given parabola. The area of \(\triangle \mathrm{PQS}\) is

1 4 sq units
2 3 sq units
3 2 sq units
4 8 sq units
Parabola

120071 The parametric equation of a parabola is \(x=t^2\) \(+1, y=2 t+1\). The Cartesian equation of its directrix is

1 \(y=0\)
2 \(x=-1\)
3 \(x=0\)
4 \(x-1=0\)