Tangent and Normal to Hyperbola
Hyperbola

120771 A common tangent to \(9 x^2-16 y^2=144\) and \(x^2+\) \(\mathrm{y}^2=9\) is

1 \(y=\frac{3}{\sqrt{7}} \mathrm{x}+\frac{15}{\sqrt{7}}\)
2 \(y=3 \sqrt{\frac{2}{7}} \mathrm{x}+\frac{15}{\sqrt{7}}\)
3 \(y=2 \sqrt{\frac{3}{7}} \mathrm{x}+15 \sqrt{7}\)
4 \(y=\sqrt{\frac{3}{7}} \mathrm{x}-15 \sqrt{7}\)
Hyperbola

120772 If the distance between the foci and distance between the directrices of the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) are in the ratio \(3: 2\) then \(a: b\) is

1 \(\sqrt{2}: 1\)
2 \(1: 2\)
3 \(\sqrt{3}: \sqrt{2}\)
4 \(2: 1\)
Hyperbola

120773 The value of \(m\) for which \(y=m x+6\) is a tangent to the hyperbola \(\frac{x^2}{100}-\frac{y^2}{49}=1\) is

1 \(\sqrt{\frac{20}{30}}\)
2 \(\sqrt{\frac{20}{17}}\)
3 \(\sqrt{\frac{17}{20}}\)
4 \(\sqrt{\frac{3}{20}}\)
Hyperbola

120774 Chords of the circle \(x^2+y^2=r^2\) touch the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{16}=1\). The locus of the midpoints of the chords is

1 \(\left(x^2+y^2\right)^2=a^2 x^2-b^2 y^2\)
2 \(\left(x^2+y^2\right)^2=a^2 x^2+b^2 y^2\)
3 \(x^2+y^2=a^2 x^2-b^2 y^2\)
4 \(x^2+y^2=a^2 x^2+b^2 y^2\)
Hyperbola

120775 The line \(21 x+5 y=116\) is a tangent to the hyperbola \(7 x^2-5 y^2=232\). Its point of contact is

1 \((-6,-2)\)
2 \((6,2)\)
3 \((6,-2)\)
4 \((-6,2)\)
Hyperbola

120771 A common tangent to \(9 x^2-16 y^2=144\) and \(x^2+\) \(\mathrm{y}^2=9\) is

1 \(y=\frac{3}{\sqrt{7}} \mathrm{x}+\frac{15}{\sqrt{7}}\)
2 \(y=3 \sqrt{\frac{2}{7}} \mathrm{x}+\frac{15}{\sqrt{7}}\)
3 \(y=2 \sqrt{\frac{3}{7}} \mathrm{x}+15 \sqrt{7}\)
4 \(y=\sqrt{\frac{3}{7}} \mathrm{x}-15 \sqrt{7}\)
Hyperbola

120772 If the distance between the foci and distance between the directrices of the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) are in the ratio \(3: 2\) then \(a: b\) is

1 \(\sqrt{2}: 1\)
2 \(1: 2\)
3 \(\sqrt{3}: \sqrt{2}\)
4 \(2: 1\)
Hyperbola

120773 The value of \(m\) for which \(y=m x+6\) is a tangent to the hyperbola \(\frac{x^2}{100}-\frac{y^2}{49}=1\) is

1 \(\sqrt{\frac{20}{30}}\)
2 \(\sqrt{\frac{20}{17}}\)
3 \(\sqrt{\frac{17}{20}}\)
4 \(\sqrt{\frac{3}{20}}\)
Hyperbola

120774 Chords of the circle \(x^2+y^2=r^2\) touch the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{16}=1\). The locus of the midpoints of the chords is

1 \(\left(x^2+y^2\right)^2=a^2 x^2-b^2 y^2\)
2 \(\left(x^2+y^2\right)^2=a^2 x^2+b^2 y^2\)
3 \(x^2+y^2=a^2 x^2-b^2 y^2\)
4 \(x^2+y^2=a^2 x^2+b^2 y^2\)
Hyperbola

120775 The line \(21 x+5 y=116\) is a tangent to the hyperbola \(7 x^2-5 y^2=232\). Its point of contact is

1 \((-6,-2)\)
2 \((6,2)\)
3 \((6,-2)\)
4 \((-6,2)\)
Hyperbola

120771 A common tangent to \(9 x^2-16 y^2=144\) and \(x^2+\) \(\mathrm{y}^2=9\) is

1 \(y=\frac{3}{\sqrt{7}} \mathrm{x}+\frac{15}{\sqrt{7}}\)
2 \(y=3 \sqrt{\frac{2}{7}} \mathrm{x}+\frac{15}{\sqrt{7}}\)
3 \(y=2 \sqrt{\frac{3}{7}} \mathrm{x}+15 \sqrt{7}\)
4 \(y=\sqrt{\frac{3}{7}} \mathrm{x}-15 \sqrt{7}\)
Hyperbola

120772 If the distance between the foci and distance between the directrices of the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) are in the ratio \(3: 2\) then \(a: b\) is

1 \(\sqrt{2}: 1\)
2 \(1: 2\)
3 \(\sqrt{3}: \sqrt{2}\)
4 \(2: 1\)
Hyperbola

120773 The value of \(m\) for which \(y=m x+6\) is a tangent to the hyperbola \(\frac{x^2}{100}-\frac{y^2}{49}=1\) is

1 \(\sqrt{\frac{20}{30}}\)
2 \(\sqrt{\frac{20}{17}}\)
3 \(\sqrt{\frac{17}{20}}\)
4 \(\sqrt{\frac{3}{20}}\)
Hyperbola

120774 Chords of the circle \(x^2+y^2=r^2\) touch the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{16}=1\). The locus of the midpoints of the chords is

1 \(\left(x^2+y^2\right)^2=a^2 x^2-b^2 y^2\)
2 \(\left(x^2+y^2\right)^2=a^2 x^2+b^2 y^2\)
3 \(x^2+y^2=a^2 x^2-b^2 y^2\)
4 \(x^2+y^2=a^2 x^2+b^2 y^2\)
Hyperbola

120775 The line \(21 x+5 y=116\) is a tangent to the hyperbola \(7 x^2-5 y^2=232\). Its point of contact is

1 \((-6,-2)\)
2 \((6,2)\)
3 \((6,-2)\)
4 \((-6,2)\)
Hyperbola

120771 A common tangent to \(9 x^2-16 y^2=144\) and \(x^2+\) \(\mathrm{y}^2=9\) is

1 \(y=\frac{3}{\sqrt{7}} \mathrm{x}+\frac{15}{\sqrt{7}}\)
2 \(y=3 \sqrt{\frac{2}{7}} \mathrm{x}+\frac{15}{\sqrt{7}}\)
3 \(y=2 \sqrt{\frac{3}{7}} \mathrm{x}+15 \sqrt{7}\)
4 \(y=\sqrt{\frac{3}{7}} \mathrm{x}-15 \sqrt{7}\)
Hyperbola

120772 If the distance between the foci and distance between the directrices of the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) are in the ratio \(3: 2\) then \(a: b\) is

1 \(\sqrt{2}: 1\)
2 \(1: 2\)
3 \(\sqrt{3}: \sqrt{2}\)
4 \(2: 1\)
Hyperbola

120773 The value of \(m\) for which \(y=m x+6\) is a tangent to the hyperbola \(\frac{x^2}{100}-\frac{y^2}{49}=1\) is

1 \(\sqrt{\frac{20}{30}}\)
2 \(\sqrt{\frac{20}{17}}\)
3 \(\sqrt{\frac{17}{20}}\)
4 \(\sqrt{\frac{3}{20}}\)
Hyperbola

120774 Chords of the circle \(x^2+y^2=r^2\) touch the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{16}=1\). The locus of the midpoints of the chords is

1 \(\left(x^2+y^2\right)^2=a^2 x^2-b^2 y^2\)
2 \(\left(x^2+y^2\right)^2=a^2 x^2+b^2 y^2\)
3 \(x^2+y^2=a^2 x^2-b^2 y^2\)
4 \(x^2+y^2=a^2 x^2+b^2 y^2\)
Hyperbola

120775 The line \(21 x+5 y=116\) is a tangent to the hyperbola \(7 x^2-5 y^2=232\). Its point of contact is

1 \((-6,-2)\)
2 \((6,2)\)
3 \((6,-2)\)
4 \((-6,2)\)
Hyperbola

120771 A common tangent to \(9 x^2-16 y^2=144\) and \(x^2+\) \(\mathrm{y}^2=9\) is

1 \(y=\frac{3}{\sqrt{7}} \mathrm{x}+\frac{15}{\sqrt{7}}\)
2 \(y=3 \sqrt{\frac{2}{7}} \mathrm{x}+\frac{15}{\sqrt{7}}\)
3 \(y=2 \sqrt{\frac{3}{7}} \mathrm{x}+15 \sqrt{7}\)
4 \(y=\sqrt{\frac{3}{7}} \mathrm{x}-15 \sqrt{7}\)
Hyperbola

120772 If the distance between the foci and distance between the directrices of the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) are in the ratio \(3: 2\) then \(a: b\) is

1 \(\sqrt{2}: 1\)
2 \(1: 2\)
3 \(\sqrt{3}: \sqrt{2}\)
4 \(2: 1\)
Hyperbola

120773 The value of \(m\) for which \(y=m x+6\) is a tangent to the hyperbola \(\frac{x^2}{100}-\frac{y^2}{49}=1\) is

1 \(\sqrt{\frac{20}{30}}\)
2 \(\sqrt{\frac{20}{17}}\)
3 \(\sqrt{\frac{17}{20}}\)
4 \(\sqrt{\frac{3}{20}}\)
Hyperbola

120774 Chords of the circle \(x^2+y^2=r^2\) touch the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{16}=1\). The locus of the midpoints of the chords is

1 \(\left(x^2+y^2\right)^2=a^2 x^2-b^2 y^2\)
2 \(\left(x^2+y^2\right)^2=a^2 x^2+b^2 y^2\)
3 \(x^2+y^2=a^2 x^2-b^2 y^2\)
4 \(x^2+y^2=a^2 x^2+b^2 y^2\)
Hyperbola

120775 The line \(21 x+5 y=116\) is a tangent to the hyperbola \(7 x^2-5 y^2=232\). Its point of contact is

1 \((-6,-2)\)
2 \((6,2)\)
3 \((6,-2)\)
4 \((-6,2)\)