Equation of Hyperbola
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Hyperbola

120746 If the vertices of a hyperbola be at \((-2,0)\) and \((2,0)\) and one of its foci be at \((-3,0)\), then which one of the following points does not lie on this hyperbola?

1 \((2 \sqrt{6}, 5)\)
2 \((6,5 \sqrt{2})\)
3 \((4, \sqrt{15})\)
4 \((-6,2 \sqrt{10})\)
Hyperbola

120747 Let \(S=\left\{(x, y) \in R^2: \frac{y^2}{1+r}-\frac{x^2}{1-r}=1\right\}\), where \(r\) \(\neq \pm 1\). Then, \(S\) represents

1 a hyperbola whose eccentricity is \(\frac{2}{\sqrt{1-\mathrm{r}}}\), when \(0\lt \mathrm{r}\lt 1\).
2 a hyperbola whose eccentricity is \(\frac{2}{\sqrt{\mathrm{r}+1}}\), when \(0\lt \mathrm{r}\lt 1\).
3 an ellipse whose eccentricity is \(\sqrt{\frac{2}{\mathrm{r}+1}}\), when \(r>1\).
4 an ellipse whose eccentricity is \(\frac{1}{\sqrt{\mathrm{r}+1}}\), when \(\mathrm{r}>1\).
Hyperbola

120748 Let \(0\lt \theta\lt \frac{\pi}{2}\). If the eccentricity of the hyperbola \(\frac{x^2}{\cos ^2 \theta}-\frac{y^2}{\sin ^2 \theta}=1\) is greater than 2 , then the length of its latus rectum lies in the interval

1 \(\left(1, \frac{3}{2}\right]\)
2 \((3, \infty)\)
3 \(\left(\frac{3}{2}, 2\right]\)
4 \((2,3)\)
Hyperbola

120749 A hyperbola has its centre at the origin, passes through the point \((4,2)\) and has transverse axis of length 4 along the \(X\)-axis. Then the eccentricity of the hyperbola is

1 2
2 \(\frac{2}{\sqrt{3}}\)
3 \(\frac{3}{2}\)
4 \(\sqrt{3}\)
Hyperbola

120746 If the vertices of a hyperbola be at \((-2,0)\) and \((2,0)\) and one of its foci be at \((-3,0)\), then which one of the following points does not lie on this hyperbola?

1 \((2 \sqrt{6}, 5)\)
2 \((6,5 \sqrt{2})\)
3 \((4, \sqrt{15})\)
4 \((-6,2 \sqrt{10})\)
Hyperbola

120747 Let \(S=\left\{(x, y) \in R^2: \frac{y^2}{1+r}-\frac{x^2}{1-r}=1\right\}\), where \(r\) \(\neq \pm 1\). Then, \(S\) represents

1 a hyperbola whose eccentricity is \(\frac{2}{\sqrt{1-\mathrm{r}}}\), when \(0\lt \mathrm{r}\lt 1\).
2 a hyperbola whose eccentricity is \(\frac{2}{\sqrt{\mathrm{r}+1}}\), when \(0\lt \mathrm{r}\lt 1\).
3 an ellipse whose eccentricity is \(\sqrt{\frac{2}{\mathrm{r}+1}}\), when \(r>1\).
4 an ellipse whose eccentricity is \(\frac{1}{\sqrt{\mathrm{r}+1}}\), when \(\mathrm{r}>1\).
Hyperbola

120748 Let \(0\lt \theta\lt \frac{\pi}{2}\). If the eccentricity of the hyperbola \(\frac{x^2}{\cos ^2 \theta}-\frac{y^2}{\sin ^2 \theta}=1\) is greater than 2 , then the length of its latus rectum lies in the interval

1 \(\left(1, \frac{3}{2}\right]\)
2 \((3, \infty)\)
3 \(\left(\frac{3}{2}, 2\right]\)
4 \((2,3)\)
Hyperbola

120749 A hyperbola has its centre at the origin, passes through the point \((4,2)\) and has transverse axis of length 4 along the \(X\)-axis. Then the eccentricity of the hyperbola is

1 2
2 \(\frac{2}{\sqrt{3}}\)
3 \(\frac{3}{2}\)
4 \(\sqrt{3}\)
Hyperbola

120746 If the vertices of a hyperbola be at \((-2,0)\) and \((2,0)\) and one of its foci be at \((-3,0)\), then which one of the following points does not lie on this hyperbola?

1 \((2 \sqrt{6}, 5)\)
2 \((6,5 \sqrt{2})\)
3 \((4, \sqrt{15})\)
4 \((-6,2 \sqrt{10})\)
Hyperbola

120747 Let \(S=\left\{(x, y) \in R^2: \frac{y^2}{1+r}-\frac{x^2}{1-r}=1\right\}\), where \(r\) \(\neq \pm 1\). Then, \(S\) represents

1 a hyperbola whose eccentricity is \(\frac{2}{\sqrt{1-\mathrm{r}}}\), when \(0\lt \mathrm{r}\lt 1\).
2 a hyperbola whose eccentricity is \(\frac{2}{\sqrt{\mathrm{r}+1}}\), when \(0\lt \mathrm{r}\lt 1\).
3 an ellipse whose eccentricity is \(\sqrt{\frac{2}{\mathrm{r}+1}}\), when \(r>1\).
4 an ellipse whose eccentricity is \(\frac{1}{\sqrt{\mathrm{r}+1}}\), when \(\mathrm{r}>1\).
Hyperbola

120748 Let \(0\lt \theta\lt \frac{\pi}{2}\). If the eccentricity of the hyperbola \(\frac{x^2}{\cos ^2 \theta}-\frac{y^2}{\sin ^2 \theta}=1\) is greater than 2 , then the length of its latus rectum lies in the interval

1 \(\left(1, \frac{3}{2}\right]\)
2 \((3, \infty)\)
3 \(\left(\frac{3}{2}, 2\right]\)
4 \((2,3)\)
Hyperbola

120749 A hyperbola has its centre at the origin, passes through the point \((4,2)\) and has transverse axis of length 4 along the \(X\)-axis. Then the eccentricity of the hyperbola is

1 2
2 \(\frac{2}{\sqrt{3}}\)
3 \(\frac{3}{2}\)
4 \(\sqrt{3}\)
Hyperbola

120746 If the vertices of a hyperbola be at \((-2,0)\) and \((2,0)\) and one of its foci be at \((-3,0)\), then which one of the following points does not lie on this hyperbola?

1 \((2 \sqrt{6}, 5)\)
2 \((6,5 \sqrt{2})\)
3 \((4, \sqrt{15})\)
4 \((-6,2 \sqrt{10})\)
Hyperbola

120747 Let \(S=\left\{(x, y) \in R^2: \frac{y^2}{1+r}-\frac{x^2}{1-r}=1\right\}\), where \(r\) \(\neq \pm 1\). Then, \(S\) represents

1 a hyperbola whose eccentricity is \(\frac{2}{\sqrt{1-\mathrm{r}}}\), when \(0\lt \mathrm{r}\lt 1\).
2 a hyperbola whose eccentricity is \(\frac{2}{\sqrt{\mathrm{r}+1}}\), when \(0\lt \mathrm{r}\lt 1\).
3 an ellipse whose eccentricity is \(\sqrt{\frac{2}{\mathrm{r}+1}}\), when \(r>1\).
4 an ellipse whose eccentricity is \(\frac{1}{\sqrt{\mathrm{r}+1}}\), when \(\mathrm{r}>1\).
Hyperbola

120748 Let \(0\lt \theta\lt \frac{\pi}{2}\). If the eccentricity of the hyperbola \(\frac{x^2}{\cos ^2 \theta}-\frac{y^2}{\sin ^2 \theta}=1\) is greater than 2 , then the length of its latus rectum lies in the interval

1 \(\left(1, \frac{3}{2}\right]\)
2 \((3, \infty)\)
3 \(\left(\frac{3}{2}, 2\right]\)
4 \((2,3)\)
Hyperbola

120749 A hyperbola has its centre at the origin, passes through the point \((4,2)\) and has transverse axis of length 4 along the \(X\)-axis. Then the eccentricity of the hyperbola is

1 2
2 \(\frac{2}{\sqrt{3}}\)
3 \(\frac{3}{2}\)
4 \(\sqrt{3}\)