Equation of Hyperbola
Hyperbola

120728 A hyperbola, having the transverse axis of length \(2 \sin \theta\) is confocal with the ellipse \(3 x^2+4 y^2=12\). Its equation is

1 \(x^2 \sin ^2 \theta-y^2 \cos ^2 \theta=1\)
2 \(\mathrm{x}^2 \operatorname{cosec}^2 \theta-\mathrm{y}^2 \sec ^2 \theta=1\)
3 \(\left(x^2+y^2\right) \sin ^2 \theta=1+y^2\)
4 \(x^2 \operatorname{cosec}^2 \theta=x^2+y^2+\sin ^2 \theta\)
Hyperbola

120729 Let the eccentricity of the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) be reciprocal to that of the ellipse \(x^2+9 y^2=9\), then the ratio \(a^2: b^2\) equals

1 \(8: 1\)
2 \(1: 8\)
3 \(9: 1\)
4 \(1: 9\)
Hyperbola

120730 The equation of the hyperbola with focus \((1,2)\), \(e=\sqrt{3}\) and directrix \(2 x+y=1\) is given by

1 \(2 y^2-12 x y-7 x^2+2 x-14 y+22=0\)
2 \(2 y^2+12 x y+7 x^2-2 x+14 y-22=0\)
3 \(2 y^2-12 x y-7 x^2-2 x-14 y-22=0\)
4 \(2 y^2+12 x y+7 x^2+2 x+14 y+22=0\)
Hyperbola

120731 If \(e_1\) and \(e_2\) are the eccentricities of the hyperbola \(16 x^2-9 y^2=1\) and its conjugate respectively. Then \(3 \mathrm{e}_1=\)

1 \(5 \mathrm{e}_2\)
2 \(4 \mathrm{e}_2\)
3 \(2 \mathrm{e}_2\)
4 \(e_2\)
Hyperbola

120728 A hyperbola, having the transverse axis of length \(2 \sin \theta\) is confocal with the ellipse \(3 x^2+4 y^2=12\). Its equation is

1 \(x^2 \sin ^2 \theta-y^2 \cos ^2 \theta=1\)
2 \(\mathrm{x}^2 \operatorname{cosec}^2 \theta-\mathrm{y}^2 \sec ^2 \theta=1\)
3 \(\left(x^2+y^2\right) \sin ^2 \theta=1+y^2\)
4 \(x^2 \operatorname{cosec}^2 \theta=x^2+y^2+\sin ^2 \theta\)
Hyperbola

120729 Let the eccentricity of the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) be reciprocal to that of the ellipse \(x^2+9 y^2=9\), then the ratio \(a^2: b^2\) equals

1 \(8: 1\)
2 \(1: 8\)
3 \(9: 1\)
4 \(1: 9\)
Hyperbola

120730 The equation of the hyperbola with focus \((1,2)\), \(e=\sqrt{3}\) and directrix \(2 x+y=1\) is given by

1 \(2 y^2-12 x y-7 x^2+2 x-14 y+22=0\)
2 \(2 y^2+12 x y+7 x^2-2 x+14 y-22=0\)
3 \(2 y^2-12 x y-7 x^2-2 x-14 y-22=0\)
4 \(2 y^2+12 x y+7 x^2+2 x+14 y+22=0\)
Hyperbola

120731 If \(e_1\) and \(e_2\) are the eccentricities of the hyperbola \(16 x^2-9 y^2=1\) and its conjugate respectively. Then \(3 \mathrm{e}_1=\)

1 \(5 \mathrm{e}_2\)
2 \(4 \mathrm{e}_2\)
3 \(2 \mathrm{e}_2\)
4 \(e_2\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Hyperbola

120728 A hyperbola, having the transverse axis of length \(2 \sin \theta\) is confocal with the ellipse \(3 x^2+4 y^2=12\). Its equation is

1 \(x^2 \sin ^2 \theta-y^2 \cos ^2 \theta=1\)
2 \(\mathrm{x}^2 \operatorname{cosec}^2 \theta-\mathrm{y}^2 \sec ^2 \theta=1\)
3 \(\left(x^2+y^2\right) \sin ^2 \theta=1+y^2\)
4 \(x^2 \operatorname{cosec}^2 \theta=x^2+y^2+\sin ^2 \theta\)
Hyperbola

120729 Let the eccentricity of the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) be reciprocal to that of the ellipse \(x^2+9 y^2=9\), then the ratio \(a^2: b^2\) equals

1 \(8: 1\)
2 \(1: 8\)
3 \(9: 1\)
4 \(1: 9\)
Hyperbola

120730 The equation of the hyperbola with focus \((1,2)\), \(e=\sqrt{3}\) and directrix \(2 x+y=1\) is given by

1 \(2 y^2-12 x y-7 x^2+2 x-14 y+22=0\)
2 \(2 y^2+12 x y+7 x^2-2 x+14 y-22=0\)
3 \(2 y^2-12 x y-7 x^2-2 x-14 y-22=0\)
4 \(2 y^2+12 x y+7 x^2+2 x+14 y+22=0\)
Hyperbola

120731 If \(e_1\) and \(e_2\) are the eccentricities of the hyperbola \(16 x^2-9 y^2=1\) and its conjugate respectively. Then \(3 \mathrm{e}_1=\)

1 \(5 \mathrm{e}_2\)
2 \(4 \mathrm{e}_2\)
3 \(2 \mathrm{e}_2\)
4 \(e_2\)
Hyperbola

120728 A hyperbola, having the transverse axis of length \(2 \sin \theta\) is confocal with the ellipse \(3 x^2+4 y^2=12\). Its equation is

1 \(x^2 \sin ^2 \theta-y^2 \cos ^2 \theta=1\)
2 \(\mathrm{x}^2 \operatorname{cosec}^2 \theta-\mathrm{y}^2 \sec ^2 \theta=1\)
3 \(\left(x^2+y^2\right) \sin ^2 \theta=1+y^2\)
4 \(x^2 \operatorname{cosec}^2 \theta=x^2+y^2+\sin ^2 \theta\)
Hyperbola

120729 Let the eccentricity of the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) be reciprocal to that of the ellipse \(x^2+9 y^2=9\), then the ratio \(a^2: b^2\) equals

1 \(8: 1\)
2 \(1: 8\)
3 \(9: 1\)
4 \(1: 9\)
Hyperbola

120730 The equation of the hyperbola with focus \((1,2)\), \(e=\sqrt{3}\) and directrix \(2 x+y=1\) is given by

1 \(2 y^2-12 x y-7 x^2+2 x-14 y+22=0\)
2 \(2 y^2+12 x y+7 x^2-2 x+14 y-22=0\)
3 \(2 y^2-12 x y-7 x^2-2 x-14 y-22=0\)
4 \(2 y^2+12 x y+7 x^2+2 x+14 y+22=0\)
Hyperbola

120731 If \(e_1\) and \(e_2\) are the eccentricities of the hyperbola \(16 x^2-9 y^2=1\) and its conjugate respectively. Then \(3 \mathrm{e}_1=\)

1 \(5 \mathrm{e}_2\)
2 \(4 \mathrm{e}_2\)
3 \(2 \mathrm{e}_2\)
4 \(e_2\)