Tangent and Normal to Ellipse
Ellipse

120665 The normal drawn at the point \(\left(\sqrt{9} \cos \frac{\pi}{4}, \sqrt{7} \sin \frac{\pi}{4}\right)\) to the ellipse \(\frac{x^2}{9}+\frac{y^2}{7}=1\) intersects its major axis at the point

1 \(\left(0, \sqrt{\frac{2}{7}}\right)\)
2 \(\left(-\sqrt{\frac{2}{9}}, 0\right)\)
3 \(\left(0,-\sqrt{\frac{2}{7}}\right)\)
4 \(\left(\sqrt{\frac{2}{9}}, 0\right)\)
Ellipse

120666 The locus of the mid-points of the portion of the tangents of the ellipse \(\frac{x^2}{2}+\frac{y^2}{1}=1\) intercepted between the coordinate axes is

1 \(\frac{1}{4 \mathrm{x}^2}+\frac{1}{2 \mathrm{y}^2}=1\)
2 \(2 x^2+y^2=4\)
3 \(\frac{1}{2 x^2}+\frac{1}{4 y^2}=1\)
4 \(x^2+2 y^2=4\)
Ellipse

120667 If a circle \((x-1)^2+y^2=r^2\) touches the ellipse \(x^2\) \(+4 y^2=16\) internally, then \(r=\)

1 \(\sqrt{\frac{11}{3}}\)
2 \(\frac{11}{3}\)
3 \(\sqrt{\frac{15}{2}}\)
4 2
Ellipse

120668 The area (in sq. units) of the quadrilateral formed by the tangents drawn at the end points of the latus rectum to the ellipse \(S=\frac{x^2}{16}+\frac{y^2}{12}=1\) is

1 96
2 16
3 128
4 64
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Ellipse

120665 The normal drawn at the point \(\left(\sqrt{9} \cos \frac{\pi}{4}, \sqrt{7} \sin \frac{\pi}{4}\right)\) to the ellipse \(\frac{x^2}{9}+\frac{y^2}{7}=1\) intersects its major axis at the point

1 \(\left(0, \sqrt{\frac{2}{7}}\right)\)
2 \(\left(-\sqrt{\frac{2}{9}}, 0\right)\)
3 \(\left(0,-\sqrt{\frac{2}{7}}\right)\)
4 \(\left(\sqrt{\frac{2}{9}}, 0\right)\)
Ellipse

120666 The locus of the mid-points of the portion of the tangents of the ellipse \(\frac{x^2}{2}+\frac{y^2}{1}=1\) intercepted between the coordinate axes is

1 \(\frac{1}{4 \mathrm{x}^2}+\frac{1}{2 \mathrm{y}^2}=1\)
2 \(2 x^2+y^2=4\)
3 \(\frac{1}{2 x^2}+\frac{1}{4 y^2}=1\)
4 \(x^2+2 y^2=4\)
Ellipse

120667 If a circle \((x-1)^2+y^2=r^2\) touches the ellipse \(x^2\) \(+4 y^2=16\) internally, then \(r=\)

1 \(\sqrt{\frac{11}{3}}\)
2 \(\frac{11}{3}\)
3 \(\sqrt{\frac{15}{2}}\)
4 2
Ellipse

120668 The area (in sq. units) of the quadrilateral formed by the tangents drawn at the end points of the latus rectum to the ellipse \(S=\frac{x^2}{16}+\frac{y^2}{12}=1\) is

1 96
2 16
3 128
4 64
Ellipse

120665 The normal drawn at the point \(\left(\sqrt{9} \cos \frac{\pi}{4}, \sqrt{7} \sin \frac{\pi}{4}\right)\) to the ellipse \(\frac{x^2}{9}+\frac{y^2}{7}=1\) intersects its major axis at the point

1 \(\left(0, \sqrt{\frac{2}{7}}\right)\)
2 \(\left(-\sqrt{\frac{2}{9}}, 0\right)\)
3 \(\left(0,-\sqrt{\frac{2}{7}}\right)\)
4 \(\left(\sqrt{\frac{2}{9}}, 0\right)\)
Ellipse

120666 The locus of the mid-points of the portion of the tangents of the ellipse \(\frac{x^2}{2}+\frac{y^2}{1}=1\) intercepted between the coordinate axes is

1 \(\frac{1}{4 \mathrm{x}^2}+\frac{1}{2 \mathrm{y}^2}=1\)
2 \(2 x^2+y^2=4\)
3 \(\frac{1}{2 x^2}+\frac{1}{4 y^2}=1\)
4 \(x^2+2 y^2=4\)
Ellipse

120667 If a circle \((x-1)^2+y^2=r^2\) touches the ellipse \(x^2\) \(+4 y^2=16\) internally, then \(r=\)

1 \(\sqrt{\frac{11}{3}}\)
2 \(\frac{11}{3}\)
3 \(\sqrt{\frac{15}{2}}\)
4 2
Ellipse

120668 The area (in sq. units) of the quadrilateral formed by the tangents drawn at the end points of the latus rectum to the ellipse \(S=\frac{x^2}{16}+\frac{y^2}{12}=1\) is

1 96
2 16
3 128
4 64
Ellipse

120665 The normal drawn at the point \(\left(\sqrt{9} \cos \frac{\pi}{4}, \sqrt{7} \sin \frac{\pi}{4}\right)\) to the ellipse \(\frac{x^2}{9}+\frac{y^2}{7}=1\) intersects its major axis at the point

1 \(\left(0, \sqrt{\frac{2}{7}}\right)\)
2 \(\left(-\sqrt{\frac{2}{9}}, 0\right)\)
3 \(\left(0,-\sqrt{\frac{2}{7}}\right)\)
4 \(\left(\sqrt{\frac{2}{9}}, 0\right)\)
Ellipse

120666 The locus of the mid-points of the portion of the tangents of the ellipse \(\frac{x^2}{2}+\frac{y^2}{1}=1\) intercepted between the coordinate axes is

1 \(\frac{1}{4 \mathrm{x}^2}+\frac{1}{2 \mathrm{y}^2}=1\)
2 \(2 x^2+y^2=4\)
3 \(\frac{1}{2 x^2}+\frac{1}{4 y^2}=1\)
4 \(x^2+2 y^2=4\)
Ellipse

120667 If a circle \((x-1)^2+y^2=r^2\) touches the ellipse \(x^2\) \(+4 y^2=16\) internally, then \(r=\)

1 \(\sqrt{\frac{11}{3}}\)
2 \(\frac{11}{3}\)
3 \(\sqrt{\frac{15}{2}}\)
4 2
Ellipse

120668 The area (in sq. units) of the quadrilateral formed by the tangents drawn at the end points of the latus rectum to the ellipse \(S=\frac{x^2}{16}+\frac{y^2}{12}=1\) is

1 96
2 16
3 128
4 64
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here