Parametric Form of Ellipse
Ellipse

120623 The line \(a x+b y=1\) cuts ellipse \(c x^2+d y^2=1\) only once if

1 \(\mathrm{ca}^2+\mathrm{db}^2=1\)
2 \(\frac{\mathrm{c}}{\mathrm{a}^2}+\frac{\mathrm{d}}{\mathrm{b}^2}=1\)
3 \(\frac{\mathrm{a}^2}{\mathrm{c}}+\frac{\mathrm{b}^2}{\mathrm{~d}}=1\)
4 \(\mathrm{ac}^2+\mathrm{bd}^2=1\)
Ellipse

120624 \(S\) and \(T\) are the foci of an ellipse and \(B\) is an end of the minor axis. If STB is an equilateral triangle, then the eccentricity of the ellipse is

1 \(\frac{1}{4}\)
2 \(\frac{1}{3}\)
3 \(\frac{1}{2}\)
4 \(\frac{2}{3}\)
Ellipse

120625 An arch of a bridge is semi-elliptical with major axis horizontal. If the length the base is 9 meter and the highest part of the bridge is 3 meter from the horizontal; the best approximation of the height of the arch. 2 meter from the centre of the base is

1 \(11 / 4 \mathrm{~m}\)
2 \(8 / 3 \mathrm{~m}\)
3 \(7 / 2 \mathrm{~m}\)
4 \(2 \mathrm{~m}\)
Ellipse

120626 Let \(S\) and \(S '\) be two foci of the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\). If a circle described on \(\mathrm{SS}^{\text {, as }}\) diameter intersects the ellipse in real and distinct point, then the eccentricity \(e\) of the ellipse satisfies

1 \(\mathrm{e}=1 / \sqrt{2}\)
2 \(\mathrm{e} \in(1 / \sqrt{2}, 1)\)
3 \(\mathrm{e} \in(0,1 \sqrt{2})\)
4 None of these
Ellipse

120623 The line \(a x+b y=1\) cuts ellipse \(c x^2+d y^2=1\) only once if

1 \(\mathrm{ca}^2+\mathrm{db}^2=1\)
2 \(\frac{\mathrm{c}}{\mathrm{a}^2}+\frac{\mathrm{d}}{\mathrm{b}^2}=1\)
3 \(\frac{\mathrm{a}^2}{\mathrm{c}}+\frac{\mathrm{b}^2}{\mathrm{~d}}=1\)
4 \(\mathrm{ac}^2+\mathrm{bd}^2=1\)
Ellipse

120624 \(S\) and \(T\) are the foci of an ellipse and \(B\) is an end of the minor axis. If STB is an equilateral triangle, then the eccentricity of the ellipse is

1 \(\frac{1}{4}\)
2 \(\frac{1}{3}\)
3 \(\frac{1}{2}\)
4 \(\frac{2}{3}\)
Ellipse

120625 An arch of a bridge is semi-elliptical with major axis horizontal. If the length the base is 9 meter and the highest part of the bridge is 3 meter from the horizontal; the best approximation of the height of the arch. 2 meter from the centre of the base is

1 \(11 / 4 \mathrm{~m}\)
2 \(8 / 3 \mathrm{~m}\)
3 \(7 / 2 \mathrm{~m}\)
4 \(2 \mathrm{~m}\)
Ellipse

120626 Let \(S\) and \(S '\) be two foci of the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\). If a circle described on \(\mathrm{SS}^{\text {, as }}\) diameter intersects the ellipse in real and distinct point, then the eccentricity \(e\) of the ellipse satisfies

1 \(\mathrm{e}=1 / \sqrt{2}\)
2 \(\mathrm{e} \in(1 / \sqrt{2}, 1)\)
3 \(\mathrm{e} \in(0,1 \sqrt{2})\)
4 None of these
Ellipse

120623 The line \(a x+b y=1\) cuts ellipse \(c x^2+d y^2=1\) only once if

1 \(\mathrm{ca}^2+\mathrm{db}^2=1\)
2 \(\frac{\mathrm{c}}{\mathrm{a}^2}+\frac{\mathrm{d}}{\mathrm{b}^2}=1\)
3 \(\frac{\mathrm{a}^2}{\mathrm{c}}+\frac{\mathrm{b}^2}{\mathrm{~d}}=1\)
4 \(\mathrm{ac}^2+\mathrm{bd}^2=1\)
Ellipse

120624 \(S\) and \(T\) are the foci of an ellipse and \(B\) is an end of the minor axis. If STB is an equilateral triangle, then the eccentricity of the ellipse is

1 \(\frac{1}{4}\)
2 \(\frac{1}{3}\)
3 \(\frac{1}{2}\)
4 \(\frac{2}{3}\)
Ellipse

120625 An arch of a bridge is semi-elliptical with major axis horizontal. If the length the base is 9 meter and the highest part of the bridge is 3 meter from the horizontal; the best approximation of the height of the arch. 2 meter from the centre of the base is

1 \(11 / 4 \mathrm{~m}\)
2 \(8 / 3 \mathrm{~m}\)
3 \(7 / 2 \mathrm{~m}\)
4 \(2 \mathrm{~m}\)
Ellipse

120626 Let \(S\) and \(S '\) be two foci of the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\). If a circle described on \(\mathrm{SS}^{\text {, as }}\) diameter intersects the ellipse in real and distinct point, then the eccentricity \(e\) of the ellipse satisfies

1 \(\mathrm{e}=1 / \sqrt{2}\)
2 \(\mathrm{e} \in(1 / \sqrt{2}, 1)\)
3 \(\mathrm{e} \in(0,1 \sqrt{2})\)
4 None of these
Ellipse

120623 The line \(a x+b y=1\) cuts ellipse \(c x^2+d y^2=1\) only once if

1 \(\mathrm{ca}^2+\mathrm{db}^2=1\)
2 \(\frac{\mathrm{c}}{\mathrm{a}^2}+\frac{\mathrm{d}}{\mathrm{b}^2}=1\)
3 \(\frac{\mathrm{a}^2}{\mathrm{c}}+\frac{\mathrm{b}^2}{\mathrm{~d}}=1\)
4 \(\mathrm{ac}^2+\mathrm{bd}^2=1\)
Ellipse

120624 \(S\) and \(T\) are the foci of an ellipse and \(B\) is an end of the minor axis. If STB is an equilateral triangle, then the eccentricity of the ellipse is

1 \(\frac{1}{4}\)
2 \(\frac{1}{3}\)
3 \(\frac{1}{2}\)
4 \(\frac{2}{3}\)
Ellipse

120625 An arch of a bridge is semi-elliptical with major axis horizontal. If the length the base is 9 meter and the highest part of the bridge is 3 meter from the horizontal; the best approximation of the height of the arch. 2 meter from the centre of the base is

1 \(11 / 4 \mathrm{~m}\)
2 \(8 / 3 \mathrm{~m}\)
3 \(7 / 2 \mathrm{~m}\)
4 \(2 \mathrm{~m}\)
Ellipse

120626 Let \(S\) and \(S '\) be two foci of the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\). If a circle described on \(\mathrm{SS}^{\text {, as }}\) diameter intersects the ellipse in real and distinct point, then the eccentricity \(e\) of the ellipse satisfies

1 \(\mathrm{e}=1 / \sqrt{2}\)
2 \(\mathrm{e} \in(1 / \sqrt{2}, 1)\)
3 \(\mathrm{e} \in(0,1 \sqrt{2})\)
4 None of these