Parametric Form of Ellipse
Ellipse

120618 The sum of the squares of the eccentricities of the conics \(\frac{x^2}{4}+\frac{y^2}{3}=1\) and \(\frac{x^2}{4}-\frac{y^2}{3}=1\) is

1 2
2 \(\sqrt{\frac{7}{3}}\)
3 \(\sqrt{7}\)
4 \(\sqrt{3}\)
Ellipse

120619 If \(P\) is point on \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) with focii \(S\) and \(S\), then the maximum value of triangle SPS' is

1 ab
2 \(\mathrm{abe}^2\)
3 abe
4 \(a b / e\)
Ellipse

120620 If \(x \cos \alpha+y \sin \alpha=4\) is tangent to \(\frac{x^2}{25}+\frac{y^2}{9}=1\), then the value of \(\alpha\) is

1 \(\tan ^{-1}(3 / 7)\)
2 \(\tan ^{-1}(\sqrt{3} / 7)\)
3 \(\tan ^{-1}(7 / 3)\)
4 \(\tan ^{-1}(3 / \sqrt{7})\)
Ellipse

120621 Area of a triangle formed by tangent and normal to the curve \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) at \(\mathbf{P}\left(\frac{\mathbf{a}}{\sqrt{2}}, \frac{\mathbf{b}}{\sqrt{2}}\right)\) with the \(\mathrm{X}\)-axis is

1 \(4 \mathrm{ab}\)
2 \(\frac{a b \sqrt{a^2+b^2}}{4}\)
3 \(\frac{a b \sqrt{a^2-b^2}}{4}\)
4 \(\frac{\mathrm{b}\left(\mathrm{a}^2+\mathrm{b}^2\right)}{4 \mathrm{a}}\)
Ellipse

120622 The eccentric angle of the point \((2, \sqrt{3})\) lying on \(\frac{x^2}{16}+\frac{y^2}{4}=1\) is

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{3}\)
Ellipse

120618 The sum of the squares of the eccentricities of the conics \(\frac{x^2}{4}+\frac{y^2}{3}=1\) and \(\frac{x^2}{4}-\frac{y^2}{3}=1\) is

1 2
2 \(\sqrt{\frac{7}{3}}\)
3 \(\sqrt{7}\)
4 \(\sqrt{3}\)
Ellipse

120619 If \(P\) is point on \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) with focii \(S\) and \(S\), then the maximum value of triangle SPS' is

1 ab
2 \(\mathrm{abe}^2\)
3 abe
4 \(a b / e\)
Ellipse

120620 If \(x \cos \alpha+y \sin \alpha=4\) is tangent to \(\frac{x^2}{25}+\frac{y^2}{9}=1\), then the value of \(\alpha\) is

1 \(\tan ^{-1}(3 / 7)\)
2 \(\tan ^{-1}(\sqrt{3} / 7)\)
3 \(\tan ^{-1}(7 / 3)\)
4 \(\tan ^{-1}(3 / \sqrt{7})\)
Ellipse

120621 Area of a triangle formed by tangent and normal to the curve \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) at \(\mathbf{P}\left(\frac{\mathbf{a}}{\sqrt{2}}, \frac{\mathbf{b}}{\sqrt{2}}\right)\) with the \(\mathrm{X}\)-axis is

1 \(4 \mathrm{ab}\)
2 \(\frac{a b \sqrt{a^2+b^2}}{4}\)
3 \(\frac{a b \sqrt{a^2-b^2}}{4}\)
4 \(\frac{\mathrm{b}\left(\mathrm{a}^2+\mathrm{b}^2\right)}{4 \mathrm{a}}\)
Ellipse

120622 The eccentric angle of the point \((2, \sqrt{3})\) lying on \(\frac{x^2}{16}+\frac{y^2}{4}=1\) is

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{3}\)
Ellipse

120618 The sum of the squares of the eccentricities of the conics \(\frac{x^2}{4}+\frac{y^2}{3}=1\) and \(\frac{x^2}{4}-\frac{y^2}{3}=1\) is

1 2
2 \(\sqrt{\frac{7}{3}}\)
3 \(\sqrt{7}\)
4 \(\sqrt{3}\)
Ellipse

120619 If \(P\) is point on \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) with focii \(S\) and \(S\), then the maximum value of triangle SPS' is

1 ab
2 \(\mathrm{abe}^2\)
3 abe
4 \(a b / e\)
Ellipse

120620 If \(x \cos \alpha+y \sin \alpha=4\) is tangent to \(\frac{x^2}{25}+\frac{y^2}{9}=1\), then the value of \(\alpha\) is

1 \(\tan ^{-1}(3 / 7)\)
2 \(\tan ^{-1}(\sqrt{3} / 7)\)
3 \(\tan ^{-1}(7 / 3)\)
4 \(\tan ^{-1}(3 / \sqrt{7})\)
Ellipse

120621 Area of a triangle formed by tangent and normal to the curve \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) at \(\mathbf{P}\left(\frac{\mathbf{a}}{\sqrt{2}}, \frac{\mathbf{b}}{\sqrt{2}}\right)\) with the \(\mathrm{X}\)-axis is

1 \(4 \mathrm{ab}\)
2 \(\frac{a b \sqrt{a^2+b^2}}{4}\)
3 \(\frac{a b \sqrt{a^2-b^2}}{4}\)
4 \(\frac{\mathrm{b}\left(\mathrm{a}^2+\mathrm{b}^2\right)}{4 \mathrm{a}}\)
Ellipse

120622 The eccentric angle of the point \((2, \sqrt{3})\) lying on \(\frac{x^2}{16}+\frac{y^2}{4}=1\) is

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{3}\)
Ellipse

120618 The sum of the squares of the eccentricities of the conics \(\frac{x^2}{4}+\frac{y^2}{3}=1\) and \(\frac{x^2}{4}-\frac{y^2}{3}=1\) is

1 2
2 \(\sqrt{\frac{7}{3}}\)
3 \(\sqrt{7}\)
4 \(\sqrt{3}\)
Ellipse

120619 If \(P\) is point on \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) with focii \(S\) and \(S\), then the maximum value of triangle SPS' is

1 ab
2 \(\mathrm{abe}^2\)
3 abe
4 \(a b / e\)
Ellipse

120620 If \(x \cos \alpha+y \sin \alpha=4\) is tangent to \(\frac{x^2}{25}+\frac{y^2}{9}=1\), then the value of \(\alpha\) is

1 \(\tan ^{-1}(3 / 7)\)
2 \(\tan ^{-1}(\sqrt{3} / 7)\)
3 \(\tan ^{-1}(7 / 3)\)
4 \(\tan ^{-1}(3 / \sqrt{7})\)
Ellipse

120621 Area of a triangle formed by tangent and normal to the curve \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) at \(\mathbf{P}\left(\frac{\mathbf{a}}{\sqrt{2}}, \frac{\mathbf{b}}{\sqrt{2}}\right)\) with the \(\mathrm{X}\)-axis is

1 \(4 \mathrm{ab}\)
2 \(\frac{a b \sqrt{a^2+b^2}}{4}\)
3 \(\frac{a b \sqrt{a^2-b^2}}{4}\)
4 \(\frac{\mathrm{b}\left(\mathrm{a}^2+\mathrm{b}^2\right)}{4 \mathrm{a}}\)
Ellipse

120622 The eccentric angle of the point \((2, \sqrt{3})\) lying on \(\frac{x^2}{16}+\frac{y^2}{4}=1\) is

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{3}\)
Ellipse

120618 The sum of the squares of the eccentricities of the conics \(\frac{x^2}{4}+\frac{y^2}{3}=1\) and \(\frac{x^2}{4}-\frac{y^2}{3}=1\) is

1 2
2 \(\sqrt{\frac{7}{3}}\)
3 \(\sqrt{7}\)
4 \(\sqrt{3}\)
Ellipse

120619 If \(P\) is point on \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) with focii \(S\) and \(S\), then the maximum value of triangle SPS' is

1 ab
2 \(\mathrm{abe}^2\)
3 abe
4 \(a b / e\)
Ellipse

120620 If \(x \cos \alpha+y \sin \alpha=4\) is tangent to \(\frac{x^2}{25}+\frac{y^2}{9}=1\), then the value of \(\alpha\) is

1 \(\tan ^{-1}(3 / 7)\)
2 \(\tan ^{-1}(\sqrt{3} / 7)\)
3 \(\tan ^{-1}(7 / 3)\)
4 \(\tan ^{-1}(3 / \sqrt{7})\)
Ellipse

120621 Area of a triangle formed by tangent and normal to the curve \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) at \(\mathbf{P}\left(\frac{\mathbf{a}}{\sqrt{2}}, \frac{\mathbf{b}}{\sqrt{2}}\right)\) with the \(\mathrm{X}\)-axis is

1 \(4 \mathrm{ab}\)
2 \(\frac{a b \sqrt{a^2+b^2}}{4}\)
3 \(\frac{a b \sqrt{a^2-b^2}}{4}\)
4 \(\frac{\mathrm{b}\left(\mathrm{a}^2+\mathrm{b}^2\right)}{4 \mathrm{a}}\)
Ellipse

120622 The eccentric angle of the point \((2, \sqrt{3})\) lying on \(\frac{x^2}{16}+\frac{y^2}{4}=1\) is

1 \(\frac{\pi}{2}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{3}\)