Standard Equation of Ellipse
Ellipse

120577 If the distance between the foci of an ellipse is equal to the length of the latusrectum, then its eccentricity is

1 \(\frac{1}{4}(\sqrt{5}-1)\)
2 \(\frac{1}{2}(\sqrt{5}+1)\)
3 \(\frac{1}{2}(\sqrt{5}-1)\)
4 \(\frac{1}{4}(\sqrt{5}+1)\)
Ellipse

120578 The equation of the ellipse whose foci are \(( \pm, 2,0)\) and eccentricity \(\frac{1}{2}\) is:

1 \(\frac{x^2}{12}+\frac{y^2}{16}=1\)
2 \(\frac{x^2}{16}+\frac{y^2}{12}=1\)
3 \(\frac{x^2}{16}+\frac{y^2}{8}=1\)
4 None of these
Ellipse

120579 \(x=4(1+\cos \theta)\) and \(y=3(1+\sin \theta)\) are the parametric equation of

1 \(\frac{(x-3)^2}{9}+\frac{(y-4)^2}{16}=1\)
2 \(\frac{(x+4)^2}{16}+\frac{(y-3)^2}{9}=1\)
3 \(\frac{(x-4)^2}{16}-\frac{(y-3)^2}{9}=1\)
4 \(\frac{(x-4)^2}{16}+\frac{(y-3)^2}{9}=1\)
Ellipse

120580 The sum of major and minor axes lengths of an ellipse whose eccentricity is \(4 / 5\) and length of latus rectum is 14.4 is

1 24
2 32
3 64
4 48
Ellipse

120577 If the distance between the foci of an ellipse is equal to the length of the latusrectum, then its eccentricity is

1 \(\frac{1}{4}(\sqrt{5}-1)\)
2 \(\frac{1}{2}(\sqrt{5}+1)\)
3 \(\frac{1}{2}(\sqrt{5}-1)\)
4 \(\frac{1}{4}(\sqrt{5}+1)\)
Ellipse

120578 The equation of the ellipse whose foci are \(( \pm, 2,0)\) and eccentricity \(\frac{1}{2}\) is:

1 \(\frac{x^2}{12}+\frac{y^2}{16}=1\)
2 \(\frac{x^2}{16}+\frac{y^2}{12}=1\)
3 \(\frac{x^2}{16}+\frac{y^2}{8}=1\)
4 None of these
Ellipse

120579 \(x=4(1+\cos \theta)\) and \(y=3(1+\sin \theta)\) are the parametric equation of

1 \(\frac{(x-3)^2}{9}+\frac{(y-4)^2}{16}=1\)
2 \(\frac{(x+4)^2}{16}+\frac{(y-3)^2}{9}=1\)
3 \(\frac{(x-4)^2}{16}-\frac{(y-3)^2}{9}=1\)
4 \(\frac{(x-4)^2}{16}+\frac{(y-3)^2}{9}=1\)
Ellipse

120580 The sum of major and minor axes lengths of an ellipse whose eccentricity is \(4 / 5\) and length of latus rectum is 14.4 is

1 24
2 32
3 64
4 48
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Ellipse

120577 If the distance between the foci of an ellipse is equal to the length of the latusrectum, then its eccentricity is

1 \(\frac{1}{4}(\sqrt{5}-1)\)
2 \(\frac{1}{2}(\sqrt{5}+1)\)
3 \(\frac{1}{2}(\sqrt{5}-1)\)
4 \(\frac{1}{4}(\sqrt{5}+1)\)
Ellipse

120578 The equation of the ellipse whose foci are \(( \pm, 2,0)\) and eccentricity \(\frac{1}{2}\) is:

1 \(\frac{x^2}{12}+\frac{y^2}{16}=1\)
2 \(\frac{x^2}{16}+\frac{y^2}{12}=1\)
3 \(\frac{x^2}{16}+\frac{y^2}{8}=1\)
4 None of these
Ellipse

120579 \(x=4(1+\cos \theta)\) and \(y=3(1+\sin \theta)\) are the parametric equation of

1 \(\frac{(x-3)^2}{9}+\frac{(y-4)^2}{16}=1\)
2 \(\frac{(x+4)^2}{16}+\frac{(y-3)^2}{9}=1\)
3 \(\frac{(x-4)^2}{16}-\frac{(y-3)^2}{9}=1\)
4 \(\frac{(x-4)^2}{16}+\frac{(y-3)^2}{9}=1\)
Ellipse

120580 The sum of major and minor axes lengths of an ellipse whose eccentricity is \(4 / 5\) and length of latus rectum is 14.4 is

1 24
2 32
3 64
4 48
Ellipse

120577 If the distance between the foci of an ellipse is equal to the length of the latusrectum, then its eccentricity is

1 \(\frac{1}{4}(\sqrt{5}-1)\)
2 \(\frac{1}{2}(\sqrt{5}+1)\)
3 \(\frac{1}{2}(\sqrt{5}-1)\)
4 \(\frac{1}{4}(\sqrt{5}+1)\)
Ellipse

120578 The equation of the ellipse whose foci are \(( \pm, 2,0)\) and eccentricity \(\frac{1}{2}\) is:

1 \(\frac{x^2}{12}+\frac{y^2}{16}=1\)
2 \(\frac{x^2}{16}+\frac{y^2}{12}=1\)
3 \(\frac{x^2}{16}+\frac{y^2}{8}=1\)
4 None of these
Ellipse

120579 \(x=4(1+\cos \theta)\) and \(y=3(1+\sin \theta)\) are the parametric equation of

1 \(\frac{(x-3)^2}{9}+\frac{(y-4)^2}{16}=1\)
2 \(\frac{(x+4)^2}{16}+\frac{(y-3)^2}{9}=1\)
3 \(\frac{(x-4)^2}{16}-\frac{(y-3)^2}{9}=1\)
4 \(\frac{(x-4)^2}{16}+\frac{(y-3)^2}{9}=1\)
Ellipse

120580 The sum of major and minor axes lengths of an ellipse whose eccentricity is \(4 / 5\) and length of latus rectum is 14.4 is

1 24
2 32
3 64
4 48