Standard Equation of Ellipse
Ellipse

120495 The length of the latus rectum of \(3 x^2-4 y+6 x-3=0\) is

1 \(\frac{3}{4}\)
2 \(\frac{4}{3}\)
3 2
4 3
Ellipse

120496 Eccentricity of ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) if it passes through point \((9,5)\) and \((12,4)\) is

1 \(\sqrt{3 / 4}\)
2 \(\sqrt{4 / 5}\)
3 \(\sqrt{5 / 6}\)
4 \(\sqrt{6 / 7}\)
Ellipse

120497 If \(\frac{x}{m a}+\frac{y}{n b}=1\) touches the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\), then

1 \(\mathrm{m}^2=\frac{\mathrm{n}^2}{\mathrm{n}^2-1}\) or \(\mathrm{n}^2=\frac{\mathrm{m}^2}{\mathrm{~m}^2-1}\)
2 \(\mathrm{m}^2=\frac{\mathrm{n}^2}{\mathrm{n}^2+1}\) or \(\mathrm{n}^2=\frac{\mathrm{m}^2}{\mathrm{~m}^2+1}\)
3 \(\mathrm{m}^2=\frac{\mathrm{n}^2+1}{\mathrm{n}^2}\) or \(\mathrm{n}^2=\frac{\mathrm{m}^2+1}{\mathrm{~m}^2}\)
4 \(\mathrm{m}^2=\frac{\mathrm{n}^2-1}{\mathrm{n}^2}\) or \(\mathrm{n}^2=\frac{\mathrm{m}^2-1}{\mathrm{~m}^2}\)
Ellipse

120498 If the area of the ellipse is \(\frac{x^2}{25}+\frac{y^2}{\lambda^2}=1\) is \(20 \pi\) square units, then \(\lambda\) is

1 \(\pm 4\)
2 \(\pm 3\)
3 \(\pm 2\).
4 \(\pm 1\)
Ellipse

120495 The length of the latus rectum of \(3 x^2-4 y+6 x-3=0\) is

1 \(\frac{3}{4}\)
2 \(\frac{4}{3}\)
3 2
4 3
Ellipse

120496 Eccentricity of ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) if it passes through point \((9,5)\) and \((12,4)\) is

1 \(\sqrt{3 / 4}\)
2 \(\sqrt{4 / 5}\)
3 \(\sqrt{5 / 6}\)
4 \(\sqrt{6 / 7}\)
Ellipse

120497 If \(\frac{x}{m a}+\frac{y}{n b}=1\) touches the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\), then

1 \(\mathrm{m}^2=\frac{\mathrm{n}^2}{\mathrm{n}^2-1}\) or \(\mathrm{n}^2=\frac{\mathrm{m}^2}{\mathrm{~m}^2-1}\)
2 \(\mathrm{m}^2=\frac{\mathrm{n}^2}{\mathrm{n}^2+1}\) or \(\mathrm{n}^2=\frac{\mathrm{m}^2}{\mathrm{~m}^2+1}\)
3 \(\mathrm{m}^2=\frac{\mathrm{n}^2+1}{\mathrm{n}^2}\) or \(\mathrm{n}^2=\frac{\mathrm{m}^2+1}{\mathrm{~m}^2}\)
4 \(\mathrm{m}^2=\frac{\mathrm{n}^2-1}{\mathrm{n}^2}\) or \(\mathrm{n}^2=\frac{\mathrm{m}^2-1}{\mathrm{~m}^2}\)
Ellipse

120498 If the area of the ellipse is \(\frac{x^2}{25}+\frac{y^2}{\lambda^2}=1\) is \(20 \pi\) square units, then \(\lambda\) is

1 \(\pm 4\)
2 \(\pm 3\)
3 \(\pm 2\).
4 \(\pm 1\)
Ellipse

120495 The length of the latus rectum of \(3 x^2-4 y+6 x-3=0\) is

1 \(\frac{3}{4}\)
2 \(\frac{4}{3}\)
3 2
4 3
Ellipse

120496 Eccentricity of ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) if it passes through point \((9,5)\) and \((12,4)\) is

1 \(\sqrt{3 / 4}\)
2 \(\sqrt{4 / 5}\)
3 \(\sqrt{5 / 6}\)
4 \(\sqrt{6 / 7}\)
Ellipse

120497 If \(\frac{x}{m a}+\frac{y}{n b}=1\) touches the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\), then

1 \(\mathrm{m}^2=\frac{\mathrm{n}^2}{\mathrm{n}^2-1}\) or \(\mathrm{n}^2=\frac{\mathrm{m}^2}{\mathrm{~m}^2-1}\)
2 \(\mathrm{m}^2=\frac{\mathrm{n}^2}{\mathrm{n}^2+1}\) or \(\mathrm{n}^2=\frac{\mathrm{m}^2}{\mathrm{~m}^2+1}\)
3 \(\mathrm{m}^2=\frac{\mathrm{n}^2+1}{\mathrm{n}^2}\) or \(\mathrm{n}^2=\frac{\mathrm{m}^2+1}{\mathrm{~m}^2}\)
4 \(\mathrm{m}^2=\frac{\mathrm{n}^2-1}{\mathrm{n}^2}\) or \(\mathrm{n}^2=\frac{\mathrm{m}^2-1}{\mathrm{~m}^2}\)
Ellipse

120498 If the area of the ellipse is \(\frac{x^2}{25}+\frac{y^2}{\lambda^2}=1\) is \(20 \pi\) square units, then \(\lambda\) is

1 \(\pm 4\)
2 \(\pm 3\)
3 \(\pm 2\).
4 \(\pm 1\)
Ellipse

120495 The length of the latus rectum of \(3 x^2-4 y+6 x-3=0\) is

1 \(\frac{3}{4}\)
2 \(\frac{4}{3}\)
3 2
4 3
Ellipse

120496 Eccentricity of ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) if it passes through point \((9,5)\) and \((12,4)\) is

1 \(\sqrt{3 / 4}\)
2 \(\sqrt{4 / 5}\)
3 \(\sqrt{5 / 6}\)
4 \(\sqrt{6 / 7}\)
Ellipse

120497 If \(\frac{x}{m a}+\frac{y}{n b}=1\) touches the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\), then

1 \(\mathrm{m}^2=\frac{\mathrm{n}^2}{\mathrm{n}^2-1}\) or \(\mathrm{n}^2=\frac{\mathrm{m}^2}{\mathrm{~m}^2-1}\)
2 \(\mathrm{m}^2=\frac{\mathrm{n}^2}{\mathrm{n}^2+1}\) or \(\mathrm{n}^2=\frac{\mathrm{m}^2}{\mathrm{~m}^2+1}\)
3 \(\mathrm{m}^2=\frac{\mathrm{n}^2+1}{\mathrm{n}^2}\) or \(\mathrm{n}^2=\frac{\mathrm{m}^2+1}{\mathrm{~m}^2}\)
4 \(\mathrm{m}^2=\frac{\mathrm{n}^2-1}{\mathrm{n}^2}\) or \(\mathrm{n}^2=\frac{\mathrm{m}^2-1}{\mathrm{~m}^2}\)
Ellipse

120498 If the area of the ellipse is \(\frac{x^2}{25}+\frac{y^2}{\lambda^2}=1\) is \(20 \pi\) square units, then \(\lambda\) is

1 \(\pm 4\)
2 \(\pm 3\)
3 \(\pm 2\).
4 \(\pm 1\)