Standard Equation of Ellipse
Ellipse

120538 Let the foci of the ellipse \(\frac{x^2}{16}+\frac{y^2}{7}=1\). Then the length of the latus rectum of the hyperbola is :

1 \(\frac{32}{7}\)
2 \(\frac{18}{5}\)
3 \(\frac{27}{4}\)
4 \(\frac{27}{10}\)
Ellipse

120539 If the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) meets the line \(\frac{x}{7}+\frac{y}{2 \sqrt{6}}=1\) on the \(x\)-axis and the line \(\frac{x}{7}-\frac{y}{2 \sqrt{6}}=1\) on the \(x\)-axis, then the eccentricity of the ellipse is
#[Qdiff: Hard, QCat: Numerical Based, examname: APEAPCET-20.08.2021,Shift-I], 787. The equation of an ellipse in its standard form, given the distance between its foci is 2 units and the length of its latus rectum is \(\frac{15}{2}\) units is,

1 \(\frac{5}{7}\)
2 \(\frac{2 \sqrt{6}}{7}\)
3 \(\frac{2 \sqrt{6}}{7}\)
4 \(\frac{2 \sqrt{5}}{7}\)
Ellipse

120540 The equations of the latusrectum of the ellipse \(9 x^2+4 y^2-18 x-8 y-23=0\) are

1 \(x=-1 \pm \sqrt{5}\)
2 \(\mathrm{y}=1 \pm \sqrt{5}\)
3 \(x=1 \pm \frac{2 \sqrt{5}}{3}\)
4 \(\mathrm{y}=2 \pm \sqrt{5}\)
Ellipse

120541 If \(\tan \theta_1 \cdot \tan \theta_2=\frac{-a^2}{b^2}\) then the chord joining 2 points \(\theta_1\) and \(\theta_2\) one the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) will subtend a right angle at

1 Focus
2 Center
3 end of major axis
4 end of minor axis
Ellipse

120542 If the lines \(2 x-y+3=0\) and \(4 x+k y+3=0\) are conjugate with respect to the ellipse \(5 x^2+\) \(6 y^2-15=0\), then ' \(k\) ' equals

1 1
2 2
3 3
4 6
Ellipse

120538 Let the foci of the ellipse \(\frac{x^2}{16}+\frac{y^2}{7}=1\). Then the length of the latus rectum of the hyperbola is :

1 \(\frac{32}{7}\)
2 \(\frac{18}{5}\)
3 \(\frac{27}{4}\)
4 \(\frac{27}{10}\)
Ellipse

120539 If the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) meets the line \(\frac{x}{7}+\frac{y}{2 \sqrt{6}}=1\) on the \(x\)-axis and the line \(\frac{x}{7}-\frac{y}{2 \sqrt{6}}=1\) on the \(x\)-axis, then the eccentricity of the ellipse is
#[Qdiff: Hard, QCat: Numerical Based, examname: APEAPCET-20.08.2021,Shift-I], 787. The equation of an ellipse in its standard form, given the distance between its foci is 2 units and the length of its latus rectum is \(\frac{15}{2}\) units is,

1 \(\frac{5}{7}\)
2 \(\frac{2 \sqrt{6}}{7}\)
3 \(\frac{2 \sqrt{6}}{7}\)
4 \(\frac{2 \sqrt{5}}{7}\)
Ellipse

120540 The equations of the latusrectum of the ellipse \(9 x^2+4 y^2-18 x-8 y-23=0\) are

1 \(x=-1 \pm \sqrt{5}\)
2 \(\mathrm{y}=1 \pm \sqrt{5}\)
3 \(x=1 \pm \frac{2 \sqrt{5}}{3}\)
4 \(\mathrm{y}=2 \pm \sqrt{5}\)
Ellipse

120541 If \(\tan \theta_1 \cdot \tan \theta_2=\frac{-a^2}{b^2}\) then the chord joining 2 points \(\theta_1\) and \(\theta_2\) one the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) will subtend a right angle at

1 Focus
2 Center
3 end of major axis
4 end of minor axis
Ellipse

120542 If the lines \(2 x-y+3=0\) and \(4 x+k y+3=0\) are conjugate with respect to the ellipse \(5 x^2+\) \(6 y^2-15=0\), then ' \(k\) ' equals

1 1
2 2
3 3
4 6
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Ellipse

120538 Let the foci of the ellipse \(\frac{x^2}{16}+\frac{y^2}{7}=1\). Then the length of the latus rectum of the hyperbola is :

1 \(\frac{32}{7}\)
2 \(\frac{18}{5}\)
3 \(\frac{27}{4}\)
4 \(\frac{27}{10}\)
Ellipse

120539 If the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) meets the line \(\frac{x}{7}+\frac{y}{2 \sqrt{6}}=1\) on the \(x\)-axis and the line \(\frac{x}{7}-\frac{y}{2 \sqrt{6}}=1\) on the \(x\)-axis, then the eccentricity of the ellipse is
#[Qdiff: Hard, QCat: Numerical Based, examname: APEAPCET-20.08.2021,Shift-I], 787. The equation of an ellipse in its standard form, given the distance between its foci is 2 units and the length of its latus rectum is \(\frac{15}{2}\) units is,

1 \(\frac{5}{7}\)
2 \(\frac{2 \sqrt{6}}{7}\)
3 \(\frac{2 \sqrt{6}}{7}\)
4 \(\frac{2 \sqrt{5}}{7}\)
Ellipse

120540 The equations of the latusrectum of the ellipse \(9 x^2+4 y^2-18 x-8 y-23=0\) are

1 \(x=-1 \pm \sqrt{5}\)
2 \(\mathrm{y}=1 \pm \sqrt{5}\)
3 \(x=1 \pm \frac{2 \sqrt{5}}{3}\)
4 \(\mathrm{y}=2 \pm \sqrt{5}\)
Ellipse

120541 If \(\tan \theta_1 \cdot \tan \theta_2=\frac{-a^2}{b^2}\) then the chord joining 2 points \(\theta_1\) and \(\theta_2\) one the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) will subtend a right angle at

1 Focus
2 Center
3 end of major axis
4 end of minor axis
Ellipse

120542 If the lines \(2 x-y+3=0\) and \(4 x+k y+3=0\) are conjugate with respect to the ellipse \(5 x^2+\) \(6 y^2-15=0\), then ' \(k\) ' equals

1 1
2 2
3 3
4 6
Ellipse

120538 Let the foci of the ellipse \(\frac{x^2}{16}+\frac{y^2}{7}=1\). Then the length of the latus rectum of the hyperbola is :

1 \(\frac{32}{7}\)
2 \(\frac{18}{5}\)
3 \(\frac{27}{4}\)
4 \(\frac{27}{10}\)
Ellipse

120539 If the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) meets the line \(\frac{x}{7}+\frac{y}{2 \sqrt{6}}=1\) on the \(x\)-axis and the line \(\frac{x}{7}-\frac{y}{2 \sqrt{6}}=1\) on the \(x\)-axis, then the eccentricity of the ellipse is
#[Qdiff: Hard, QCat: Numerical Based, examname: APEAPCET-20.08.2021,Shift-I], 787. The equation of an ellipse in its standard form, given the distance between its foci is 2 units and the length of its latus rectum is \(\frac{15}{2}\) units is,

1 \(\frac{5}{7}\)
2 \(\frac{2 \sqrt{6}}{7}\)
3 \(\frac{2 \sqrt{6}}{7}\)
4 \(\frac{2 \sqrt{5}}{7}\)
Ellipse

120540 The equations of the latusrectum of the ellipse \(9 x^2+4 y^2-18 x-8 y-23=0\) are

1 \(x=-1 \pm \sqrt{5}\)
2 \(\mathrm{y}=1 \pm \sqrt{5}\)
3 \(x=1 \pm \frac{2 \sqrt{5}}{3}\)
4 \(\mathrm{y}=2 \pm \sqrt{5}\)
Ellipse

120541 If \(\tan \theta_1 \cdot \tan \theta_2=\frac{-a^2}{b^2}\) then the chord joining 2 points \(\theta_1\) and \(\theta_2\) one the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) will subtend a right angle at

1 Focus
2 Center
3 end of major axis
4 end of minor axis
Ellipse

120542 If the lines \(2 x-y+3=0\) and \(4 x+k y+3=0\) are conjugate with respect to the ellipse \(5 x^2+\) \(6 y^2-15=0\), then ' \(k\) ' equals

1 1
2 2
3 3
4 6
Ellipse

120538 Let the foci of the ellipse \(\frac{x^2}{16}+\frac{y^2}{7}=1\). Then the length of the latus rectum of the hyperbola is :

1 \(\frac{32}{7}\)
2 \(\frac{18}{5}\)
3 \(\frac{27}{4}\)
4 \(\frac{27}{10}\)
Ellipse

120539 If the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) meets the line \(\frac{x}{7}+\frac{y}{2 \sqrt{6}}=1\) on the \(x\)-axis and the line \(\frac{x}{7}-\frac{y}{2 \sqrt{6}}=1\) on the \(x\)-axis, then the eccentricity of the ellipse is
#[Qdiff: Hard, QCat: Numerical Based, examname: APEAPCET-20.08.2021,Shift-I], 787. The equation of an ellipse in its standard form, given the distance between its foci is 2 units and the length of its latus rectum is \(\frac{15}{2}\) units is,

1 \(\frac{5}{7}\)
2 \(\frac{2 \sqrt{6}}{7}\)
3 \(\frac{2 \sqrt{6}}{7}\)
4 \(\frac{2 \sqrt{5}}{7}\)
Ellipse

120540 The equations of the latusrectum of the ellipse \(9 x^2+4 y^2-18 x-8 y-23=0\) are

1 \(x=-1 \pm \sqrt{5}\)
2 \(\mathrm{y}=1 \pm \sqrt{5}\)
3 \(x=1 \pm \frac{2 \sqrt{5}}{3}\)
4 \(\mathrm{y}=2 \pm \sqrt{5}\)
Ellipse

120541 If \(\tan \theta_1 \cdot \tan \theta_2=\frac{-a^2}{b^2}\) then the chord joining 2 points \(\theta_1\) and \(\theta_2\) one the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) will subtend a right angle at

1 Focus
2 Center
3 end of major axis
4 end of minor axis
Ellipse

120542 If the lines \(2 x-y+3=0\) and \(4 x+k y+3=0\) are conjugate with respect to the ellipse \(5 x^2+\) \(6 y^2-15=0\), then ' \(k\) ' equals

1 1
2 2
3 3
4 6