Standard Equation of Ellipse
Ellipse

120490 The eccentricity of the ellipse \(9 x^2+5 y^2-30 y\) \(=0\) is

1 \(\frac{1}{3}\)
2 \(\frac{2}{3}\)
3 \(\frac{3}{4}\)
4 None of these
Ellipse

120491 The length of the latus-rectum of the ellipse \(3 x^2\) \(+\mathrm{y}^2=12\) is

1 4
2 3
3 8
4 \(\frac{4}{\sqrt{3}}\)
Ellipse

120492 Eccentricity of the ellipse \(25 x^2+9 y^2-150 x-\) \(\mathbf{9 0 y}+\mathbf{2 2 5}=0\) is

1 \(\frac{4}{5}\)
2 \(\frac{2}{5}\)
3 \(\frac{2}{\sqrt{5}}\)
4 \(\frac{\sqrt{2}}{5}\)
Ellipse

120493 The eccentricity of the ellipse \(9 x^2+25 y^2=225\) is

1 \(\frac{4}{5}\)
2 \(\frac{3}{4}\)
3 \(\frac{3}{5}\)
4 \(\frac{9}{16}\)
Ellipse

120494 The eccentricity of the ellipse \(\frac{x^2}{36}+\frac{y^2}{16}=1\) is

1 \(\frac{2 \sqrt{5}}{6}\)
2 \(\frac{2 \sqrt{13}}{4}\)
3 \(\frac{2 \sqrt{5}}{4}\)
4 \(\frac{2 \sqrt{13}}{6}\)
Ellipse

120490 The eccentricity of the ellipse \(9 x^2+5 y^2-30 y\) \(=0\) is

1 \(\frac{1}{3}\)
2 \(\frac{2}{3}\)
3 \(\frac{3}{4}\)
4 None of these
Ellipse

120491 The length of the latus-rectum of the ellipse \(3 x^2\) \(+\mathrm{y}^2=12\) is

1 4
2 3
3 8
4 \(\frac{4}{\sqrt{3}}\)
Ellipse

120492 Eccentricity of the ellipse \(25 x^2+9 y^2-150 x-\) \(\mathbf{9 0 y}+\mathbf{2 2 5}=0\) is

1 \(\frac{4}{5}\)
2 \(\frac{2}{5}\)
3 \(\frac{2}{\sqrt{5}}\)
4 \(\frac{\sqrt{2}}{5}\)
Ellipse

120493 The eccentricity of the ellipse \(9 x^2+25 y^2=225\) is

1 \(\frac{4}{5}\)
2 \(\frac{3}{4}\)
3 \(\frac{3}{5}\)
4 \(\frac{9}{16}\)
Ellipse

120494 The eccentricity of the ellipse \(\frac{x^2}{36}+\frac{y^2}{16}=1\) is

1 \(\frac{2 \sqrt{5}}{6}\)
2 \(\frac{2 \sqrt{13}}{4}\)
3 \(\frac{2 \sqrt{5}}{4}\)
4 \(\frac{2 \sqrt{13}}{6}\)
Ellipse

120490 The eccentricity of the ellipse \(9 x^2+5 y^2-30 y\) \(=0\) is

1 \(\frac{1}{3}\)
2 \(\frac{2}{3}\)
3 \(\frac{3}{4}\)
4 None of these
Ellipse

120491 The length of the latus-rectum of the ellipse \(3 x^2\) \(+\mathrm{y}^2=12\) is

1 4
2 3
3 8
4 \(\frac{4}{\sqrt{3}}\)
Ellipse

120492 Eccentricity of the ellipse \(25 x^2+9 y^2-150 x-\) \(\mathbf{9 0 y}+\mathbf{2 2 5}=0\) is

1 \(\frac{4}{5}\)
2 \(\frac{2}{5}\)
3 \(\frac{2}{\sqrt{5}}\)
4 \(\frac{\sqrt{2}}{5}\)
Ellipse

120493 The eccentricity of the ellipse \(9 x^2+25 y^2=225\) is

1 \(\frac{4}{5}\)
2 \(\frac{3}{4}\)
3 \(\frac{3}{5}\)
4 \(\frac{9}{16}\)
Ellipse

120494 The eccentricity of the ellipse \(\frac{x^2}{36}+\frac{y^2}{16}=1\) is

1 \(\frac{2 \sqrt{5}}{6}\)
2 \(\frac{2 \sqrt{13}}{4}\)
3 \(\frac{2 \sqrt{5}}{4}\)
4 \(\frac{2 \sqrt{13}}{6}\)
Ellipse

120490 The eccentricity of the ellipse \(9 x^2+5 y^2-30 y\) \(=0\) is

1 \(\frac{1}{3}\)
2 \(\frac{2}{3}\)
3 \(\frac{3}{4}\)
4 None of these
Ellipse

120491 The length of the latus-rectum of the ellipse \(3 x^2\) \(+\mathrm{y}^2=12\) is

1 4
2 3
3 8
4 \(\frac{4}{\sqrt{3}}\)
Ellipse

120492 Eccentricity of the ellipse \(25 x^2+9 y^2-150 x-\) \(\mathbf{9 0 y}+\mathbf{2 2 5}=0\) is

1 \(\frac{4}{5}\)
2 \(\frac{2}{5}\)
3 \(\frac{2}{\sqrt{5}}\)
4 \(\frac{\sqrt{2}}{5}\)
Ellipse

120493 The eccentricity of the ellipse \(9 x^2+25 y^2=225\) is

1 \(\frac{4}{5}\)
2 \(\frac{3}{4}\)
3 \(\frac{3}{5}\)
4 \(\frac{9}{16}\)
Ellipse

120494 The eccentricity of the ellipse \(\frac{x^2}{36}+\frac{y^2}{16}=1\) is

1 \(\frac{2 \sqrt{5}}{6}\)
2 \(\frac{2 \sqrt{13}}{4}\)
3 \(\frac{2 \sqrt{5}}{4}\)
4 \(\frac{2 \sqrt{13}}{6}\)
Ellipse

120490 The eccentricity of the ellipse \(9 x^2+5 y^2-30 y\) \(=0\) is

1 \(\frac{1}{3}\)
2 \(\frac{2}{3}\)
3 \(\frac{3}{4}\)
4 None of these
Ellipse

120491 The length of the latus-rectum of the ellipse \(3 x^2\) \(+\mathrm{y}^2=12\) is

1 4
2 3
3 8
4 \(\frac{4}{\sqrt{3}}\)
Ellipse

120492 Eccentricity of the ellipse \(25 x^2+9 y^2-150 x-\) \(\mathbf{9 0 y}+\mathbf{2 2 5}=0\) is

1 \(\frac{4}{5}\)
2 \(\frac{2}{5}\)
3 \(\frac{2}{\sqrt{5}}\)
4 \(\frac{\sqrt{2}}{5}\)
Ellipse

120493 The eccentricity of the ellipse \(9 x^2+25 y^2=225\) is

1 \(\frac{4}{5}\)
2 \(\frac{3}{4}\)
3 \(\frac{3}{5}\)
4 \(\frac{9}{16}\)
Ellipse

120494 The eccentricity of the ellipse \(\frac{x^2}{36}+\frac{y^2}{16}=1\) is

1 \(\frac{2 \sqrt{5}}{6}\)
2 \(\frac{2 \sqrt{13}}{4}\)
3 \(\frac{2 \sqrt{5}}{4}\)
4 \(\frac{2 \sqrt{13}}{6}\)