Coefficient of Terms
Binomial Theorem and its Simple Application

119436 The \(13^{\text {th }}\) term in the expansion of \(\left(x^2+\frac{2}{x}\right)^n\) is independent of \(x\), then the sum of the divisors of \(\mathbf{n}\) is

1 39
2 36
3 37
4 38
Binomial Theorem and its Simple Application

119437 The total number of terms in the expansion of \((x+y)^{100}+(x-y)^{100}\) after simplification is

1 100
2 50
3 51
4 202
Binomial Theorem and its Simple Application

119438 The middle term in the expansion of \((1+x)^{2 n}\) is

1 \(\frac{1.3 .5 \ldots . .(2 \mathrm{n}-1)}{\mathrm{n}} \mathrm{x}^{\mathrm{n}}\)
2 \(\frac{1.3 .5 \ldots . .(2 \mathrm{n}-1)}{\mathrm{n} !} 2^{\mathrm{n}-1} \mathrm{x}^{\mathrm{n}}\)
3 \(\frac{1.3 .5 \ldots .(2 \mathrm{n}-1)}{\mathrm{n} !} \mathrm{x}^{\mathrm{n}}\)
4 \(\frac{1.3 .5 \ldots . .(2 \mathrm{n}-1)}{\mathrm{n} !} 2^{\mathrm{n}} \mathrm{x}^{\mathrm{n}}\)
Binomial Theorem and its Simple Application

119439 Find the \(\mathbf{r}^{\text {th }}\) term from the end in the expansions of \((x+a)^n\).

1 \({ }^n C_{\mathrm{r}} x^{\mathrm{r}-1} a^{\mathrm{r}}\)
2 \({ }^n C_r x^r a^{n-r}\)
3 \({ }^n C_{n-1} x a^{n-1}\)
4 \({ }^n C_{n-r+1} x^{r-1} a^{n-r+1}\)
Binomial Theorem and its Simple Application

119436 The \(13^{\text {th }}\) term in the expansion of \(\left(x^2+\frac{2}{x}\right)^n\) is independent of \(x\), then the sum of the divisors of \(\mathbf{n}\) is

1 39
2 36
3 37
4 38
Binomial Theorem and its Simple Application

119437 The total number of terms in the expansion of \((x+y)^{100}+(x-y)^{100}\) after simplification is

1 100
2 50
3 51
4 202
Binomial Theorem and its Simple Application

119438 The middle term in the expansion of \((1+x)^{2 n}\) is

1 \(\frac{1.3 .5 \ldots . .(2 \mathrm{n}-1)}{\mathrm{n}} \mathrm{x}^{\mathrm{n}}\)
2 \(\frac{1.3 .5 \ldots . .(2 \mathrm{n}-1)}{\mathrm{n} !} 2^{\mathrm{n}-1} \mathrm{x}^{\mathrm{n}}\)
3 \(\frac{1.3 .5 \ldots .(2 \mathrm{n}-1)}{\mathrm{n} !} \mathrm{x}^{\mathrm{n}}\)
4 \(\frac{1.3 .5 \ldots . .(2 \mathrm{n}-1)}{\mathrm{n} !} 2^{\mathrm{n}} \mathrm{x}^{\mathrm{n}}\)
Binomial Theorem and its Simple Application

119439 Find the \(\mathbf{r}^{\text {th }}\) term from the end in the expansions of \((x+a)^n\).

1 \({ }^n C_{\mathrm{r}} x^{\mathrm{r}-1} a^{\mathrm{r}}\)
2 \({ }^n C_r x^r a^{n-r}\)
3 \({ }^n C_{n-1} x a^{n-1}\)
4 \({ }^n C_{n-r+1} x^{r-1} a^{n-r+1}\)
Binomial Theorem and its Simple Application

119436 The \(13^{\text {th }}\) term in the expansion of \(\left(x^2+\frac{2}{x}\right)^n\) is independent of \(x\), then the sum of the divisors of \(\mathbf{n}\) is

1 39
2 36
3 37
4 38
Binomial Theorem and its Simple Application

119437 The total number of terms in the expansion of \((x+y)^{100}+(x-y)^{100}\) after simplification is

1 100
2 50
3 51
4 202
Binomial Theorem and its Simple Application

119438 The middle term in the expansion of \((1+x)^{2 n}\) is

1 \(\frac{1.3 .5 \ldots . .(2 \mathrm{n}-1)}{\mathrm{n}} \mathrm{x}^{\mathrm{n}}\)
2 \(\frac{1.3 .5 \ldots . .(2 \mathrm{n}-1)}{\mathrm{n} !} 2^{\mathrm{n}-1} \mathrm{x}^{\mathrm{n}}\)
3 \(\frac{1.3 .5 \ldots .(2 \mathrm{n}-1)}{\mathrm{n} !} \mathrm{x}^{\mathrm{n}}\)
4 \(\frac{1.3 .5 \ldots . .(2 \mathrm{n}-1)}{\mathrm{n} !} 2^{\mathrm{n}} \mathrm{x}^{\mathrm{n}}\)
Binomial Theorem and its Simple Application

119439 Find the \(\mathbf{r}^{\text {th }}\) term from the end in the expansions of \((x+a)^n\).

1 \({ }^n C_{\mathrm{r}} x^{\mathrm{r}-1} a^{\mathrm{r}}\)
2 \({ }^n C_r x^r a^{n-r}\)
3 \({ }^n C_{n-1} x a^{n-1}\)
4 \({ }^n C_{n-r+1} x^{r-1} a^{n-r+1}\)
Binomial Theorem and its Simple Application

119436 The \(13^{\text {th }}\) term in the expansion of \(\left(x^2+\frac{2}{x}\right)^n\) is independent of \(x\), then the sum of the divisors of \(\mathbf{n}\) is

1 39
2 36
3 37
4 38
Binomial Theorem and its Simple Application

119437 The total number of terms in the expansion of \((x+y)^{100}+(x-y)^{100}\) after simplification is

1 100
2 50
3 51
4 202
Binomial Theorem and its Simple Application

119438 The middle term in the expansion of \((1+x)^{2 n}\) is

1 \(\frac{1.3 .5 \ldots . .(2 \mathrm{n}-1)}{\mathrm{n}} \mathrm{x}^{\mathrm{n}}\)
2 \(\frac{1.3 .5 \ldots . .(2 \mathrm{n}-1)}{\mathrm{n} !} 2^{\mathrm{n}-1} \mathrm{x}^{\mathrm{n}}\)
3 \(\frac{1.3 .5 \ldots .(2 \mathrm{n}-1)}{\mathrm{n} !} \mathrm{x}^{\mathrm{n}}\)
4 \(\frac{1.3 .5 \ldots . .(2 \mathrm{n}-1)}{\mathrm{n} !} 2^{\mathrm{n}} \mathrm{x}^{\mathrm{n}}\)
Binomial Theorem and its Simple Application

119439 Find the \(\mathbf{r}^{\text {th }}\) term from the end in the expansions of \((x+a)^n\).

1 \({ }^n C_{\mathrm{r}} x^{\mathrm{r}-1} a^{\mathrm{r}}\)
2 \({ }^n C_r x^r a^{n-r}\)
3 \({ }^n C_{n-1} x a^{n-1}\)
4 \({ }^n C_{n-r+1} x^{r-1} a^{n-r+1}\)