Coefficient of Terms
Binomial Theorem and its Simple Application

119443 If \(|x|\lt 1\), the coefficient of \(c^n\) in the expansion of \(\left(1+x+x^2+x^3+\ldots \ldots\right)^2\) is

1 \(\mathrm{n}\)
2 \(n+1\)
3 \(n-1\)
4 \(n+2\)
Binomial Theorem and its Simple Application

119460 If the coefficient of the \(5^{\text {th }}\) term is the numerically the greatest coefficient in the expansion of \((1-x)^{\mathrm{n}}\), then the positive integral value of \(n\) is

1 10
2 9
3 8
4 7
Binomial Theorem and its Simple Application

119500 The coefficient of \(x^4\) in the expansion of \((1+x+\) \(x^2+x^3\) ) is

1 \({ }^n \mathrm{C}_4\)
2 \({ }^n \mathrm{C}_4+{ }^n \mathrm{C}_2\)
3 \({ }^n \mathrm{C}_4+{ }^n \mathrm{C}_2+{ }^n \mathrm{C}_4 \cdot{ }^{\mathrm{n}} \mathrm{C}_2\)
4 \({ }^{\mathrm{n}} \mathrm{C}_4+{ }^{\mathrm{n}} \mathrm{C}_2+{ }^{\mathrm{n}} \mathrm{C}_1 \cdot{ }^{\mathrm{n}} \mathrm{C}_2\)
Binomial Theorem and its Simple Application

119430 The coefficient of the term independent of \(x\) in the expansion of \(\left(\sqrt{\frac{x}{3}}+\frac{3}{2 x^2}\right)^{10}\) is :

1 \(5 / 4\)
2 \(7 / 4\)
3 \(9 / 4\)
4 \(3 / 4\)
Binomial Theorem and its Simple Application

119431 The \(11^{\text {th }}\) term in the expansion of \(\left(x+\frac{1}{\sqrt{x}}\right)^{14}\) is

1 \(\frac{999}{\mathrm{x}}\)
2 \(\frac{1001}{\mathrm{x}}\)
3 \(\mathrm{i}\)
4 \(\frac{\mathrm{x}}{1001}\)
Binomial Theorem and its Simple Application

119443 If \(|x|\lt 1\), the coefficient of \(c^n\) in the expansion of \(\left(1+x+x^2+x^3+\ldots \ldots\right)^2\) is

1 \(\mathrm{n}\)
2 \(n+1\)
3 \(n-1\)
4 \(n+2\)
Binomial Theorem and its Simple Application

119460 If the coefficient of the \(5^{\text {th }}\) term is the numerically the greatest coefficient in the expansion of \((1-x)^{\mathrm{n}}\), then the positive integral value of \(n\) is

1 10
2 9
3 8
4 7
Binomial Theorem and its Simple Application

119500 The coefficient of \(x^4\) in the expansion of \((1+x+\) \(x^2+x^3\) ) is

1 \({ }^n \mathrm{C}_4\)
2 \({ }^n \mathrm{C}_4+{ }^n \mathrm{C}_2\)
3 \({ }^n \mathrm{C}_4+{ }^n \mathrm{C}_2+{ }^n \mathrm{C}_4 \cdot{ }^{\mathrm{n}} \mathrm{C}_2\)
4 \({ }^{\mathrm{n}} \mathrm{C}_4+{ }^{\mathrm{n}} \mathrm{C}_2+{ }^{\mathrm{n}} \mathrm{C}_1 \cdot{ }^{\mathrm{n}} \mathrm{C}_2\)
Binomial Theorem and its Simple Application

119430 The coefficient of the term independent of \(x\) in the expansion of \(\left(\sqrt{\frac{x}{3}}+\frac{3}{2 x^2}\right)^{10}\) is :

1 \(5 / 4\)
2 \(7 / 4\)
3 \(9 / 4\)
4 \(3 / 4\)
Binomial Theorem and its Simple Application

119431 The \(11^{\text {th }}\) term in the expansion of \(\left(x+\frac{1}{\sqrt{x}}\right)^{14}\) is

1 \(\frac{999}{\mathrm{x}}\)
2 \(\frac{1001}{\mathrm{x}}\)
3 \(\mathrm{i}\)
4 \(\frac{\mathrm{x}}{1001}\)
Binomial Theorem and its Simple Application

119443 If \(|x|\lt 1\), the coefficient of \(c^n\) in the expansion of \(\left(1+x+x^2+x^3+\ldots \ldots\right)^2\) is

1 \(\mathrm{n}\)
2 \(n+1\)
3 \(n-1\)
4 \(n+2\)
Binomial Theorem and its Simple Application

119460 If the coefficient of the \(5^{\text {th }}\) term is the numerically the greatest coefficient in the expansion of \((1-x)^{\mathrm{n}}\), then the positive integral value of \(n\) is

1 10
2 9
3 8
4 7
Binomial Theorem and its Simple Application

119500 The coefficient of \(x^4\) in the expansion of \((1+x+\) \(x^2+x^3\) ) is

1 \({ }^n \mathrm{C}_4\)
2 \({ }^n \mathrm{C}_4+{ }^n \mathrm{C}_2\)
3 \({ }^n \mathrm{C}_4+{ }^n \mathrm{C}_2+{ }^n \mathrm{C}_4 \cdot{ }^{\mathrm{n}} \mathrm{C}_2\)
4 \({ }^{\mathrm{n}} \mathrm{C}_4+{ }^{\mathrm{n}} \mathrm{C}_2+{ }^{\mathrm{n}} \mathrm{C}_1 \cdot{ }^{\mathrm{n}} \mathrm{C}_2\)
Binomial Theorem and its Simple Application

119430 The coefficient of the term independent of \(x\) in the expansion of \(\left(\sqrt{\frac{x}{3}}+\frac{3}{2 x^2}\right)^{10}\) is :

1 \(5 / 4\)
2 \(7 / 4\)
3 \(9 / 4\)
4 \(3 / 4\)
Binomial Theorem and its Simple Application

119431 The \(11^{\text {th }}\) term in the expansion of \(\left(x+\frac{1}{\sqrt{x}}\right)^{14}\) is

1 \(\frac{999}{\mathrm{x}}\)
2 \(\frac{1001}{\mathrm{x}}\)
3 \(\mathrm{i}\)
4 \(\frac{\mathrm{x}}{1001}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Binomial Theorem and its Simple Application

119443 If \(|x|\lt 1\), the coefficient of \(c^n\) in the expansion of \(\left(1+x+x^2+x^3+\ldots \ldots\right)^2\) is

1 \(\mathrm{n}\)
2 \(n+1\)
3 \(n-1\)
4 \(n+2\)
Binomial Theorem and its Simple Application

119460 If the coefficient of the \(5^{\text {th }}\) term is the numerically the greatest coefficient in the expansion of \((1-x)^{\mathrm{n}}\), then the positive integral value of \(n\) is

1 10
2 9
3 8
4 7
Binomial Theorem and its Simple Application

119500 The coefficient of \(x^4\) in the expansion of \((1+x+\) \(x^2+x^3\) ) is

1 \({ }^n \mathrm{C}_4\)
2 \({ }^n \mathrm{C}_4+{ }^n \mathrm{C}_2\)
3 \({ }^n \mathrm{C}_4+{ }^n \mathrm{C}_2+{ }^n \mathrm{C}_4 \cdot{ }^{\mathrm{n}} \mathrm{C}_2\)
4 \({ }^{\mathrm{n}} \mathrm{C}_4+{ }^{\mathrm{n}} \mathrm{C}_2+{ }^{\mathrm{n}} \mathrm{C}_1 \cdot{ }^{\mathrm{n}} \mathrm{C}_2\)
Binomial Theorem and its Simple Application

119430 The coefficient of the term independent of \(x\) in the expansion of \(\left(\sqrt{\frac{x}{3}}+\frac{3}{2 x^2}\right)^{10}\) is :

1 \(5 / 4\)
2 \(7 / 4\)
3 \(9 / 4\)
4 \(3 / 4\)
Binomial Theorem and its Simple Application

119431 The \(11^{\text {th }}\) term in the expansion of \(\left(x+\frac{1}{\sqrt{x}}\right)^{14}\) is

1 \(\frac{999}{\mathrm{x}}\)
2 \(\frac{1001}{\mathrm{x}}\)
3 \(\mathrm{i}\)
4 \(\frac{\mathrm{x}}{1001}\)
Binomial Theorem and its Simple Application

119443 If \(|x|\lt 1\), the coefficient of \(c^n\) in the expansion of \(\left(1+x+x^2+x^3+\ldots \ldots\right)^2\) is

1 \(\mathrm{n}\)
2 \(n+1\)
3 \(n-1\)
4 \(n+2\)
Binomial Theorem and its Simple Application

119460 If the coefficient of the \(5^{\text {th }}\) term is the numerically the greatest coefficient in the expansion of \((1-x)^{\mathrm{n}}\), then the positive integral value of \(n\) is

1 10
2 9
3 8
4 7
Binomial Theorem and its Simple Application

119500 The coefficient of \(x^4\) in the expansion of \((1+x+\) \(x^2+x^3\) ) is

1 \({ }^n \mathrm{C}_4\)
2 \({ }^n \mathrm{C}_4+{ }^n \mathrm{C}_2\)
3 \({ }^n \mathrm{C}_4+{ }^n \mathrm{C}_2+{ }^n \mathrm{C}_4 \cdot{ }^{\mathrm{n}} \mathrm{C}_2\)
4 \({ }^{\mathrm{n}} \mathrm{C}_4+{ }^{\mathrm{n}} \mathrm{C}_2+{ }^{\mathrm{n}} \mathrm{C}_1 \cdot{ }^{\mathrm{n}} \mathrm{C}_2\)
Binomial Theorem and its Simple Application

119430 The coefficient of the term independent of \(x\) in the expansion of \(\left(\sqrt{\frac{x}{3}}+\frac{3}{2 x^2}\right)^{10}\) is :

1 \(5 / 4\)
2 \(7 / 4\)
3 \(9 / 4\)
4 \(3 / 4\)
Binomial Theorem and its Simple Application

119431 The \(11^{\text {th }}\) term in the expansion of \(\left(x+\frac{1}{\sqrt{x}}\right)^{14}\) is

1 \(\frac{999}{\mathrm{x}}\)
2 \(\frac{1001}{\mathrm{x}}\)
3 \(\mathrm{i}\)
4 \(\frac{\mathrm{x}}{1001}\)