Binomial Expansion
Binomial Theorem and its Simple Application

119317 The number of terms in the expansion of \((\mathrm{x}+\mathrm{y}+\mathrm{z})^{10}\) is

1 142
2 11
3 110
4 66
Binomial Theorem and its Simple Application

119318 The number of terms in the expansion of \(\left(x^2+y^2\right)^{25}-\left(x^2-y^2\right)^{25}\) after simplification is

1 0
2 26
3 13
4 50
Binomial Theorem and its Simple Application

119319 If \(\mathbf{n}\) is an odd positive integer and \(\left(1+x+x^2+\right.\) \(\left.x^3\right)^n=\sum_{r=0}^{3 n} a_r x^r\), then \(a_0-a_1+a_2-a_3+\ldots . .-a_{3 n}\) is

1 \(4^{\mathrm{n}}\)
2 1
3 -1
4 0
Binomial Theorem and its Simple Application

119320 The ninth term of the expansion \(\left(3 x-\frac{1}{2 x}\right)^8\) is

1 \(\frac{1}{512 \mathrm{x}^9}\)
2 \(\frac{-1}{512 \mathrm{x}^9}\)
3 \(\frac{-1}{256 x^8}\)
4 \(\frac{1}{256 \mathrm{x}^8}\)
Binomial Theorem and its Simple Application

119321 If \(z=\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^5+\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^5\), then

1 \(\operatorname{Re}(\mathrm{z})=0\)
2 \(\operatorname{Im}(\mathrm{z})=0\)
3 \(\operatorname{Re}(\mathrm{z})>0, \operatorname{Im}(\mathrm{z})>0\)
4 \(\operatorname{Re}(\mathrm{z})>0, \operatorname{Im}(\mathrm{z})\lt 0\)
Binomial Theorem and its Simple Application

119317 The number of terms in the expansion of \((\mathrm{x}+\mathrm{y}+\mathrm{z})^{10}\) is

1 142
2 11
3 110
4 66
Binomial Theorem and its Simple Application

119318 The number of terms in the expansion of \(\left(x^2+y^2\right)^{25}-\left(x^2-y^2\right)^{25}\) after simplification is

1 0
2 26
3 13
4 50
Binomial Theorem and its Simple Application

119319 If \(\mathbf{n}\) is an odd positive integer and \(\left(1+x+x^2+\right.\) \(\left.x^3\right)^n=\sum_{r=0}^{3 n} a_r x^r\), then \(a_0-a_1+a_2-a_3+\ldots . .-a_{3 n}\) is

1 \(4^{\mathrm{n}}\)
2 1
3 -1
4 0
Binomial Theorem and its Simple Application

119320 The ninth term of the expansion \(\left(3 x-\frac{1}{2 x}\right)^8\) is

1 \(\frac{1}{512 \mathrm{x}^9}\)
2 \(\frac{-1}{512 \mathrm{x}^9}\)
3 \(\frac{-1}{256 x^8}\)
4 \(\frac{1}{256 \mathrm{x}^8}\)
Binomial Theorem and its Simple Application

119321 If \(z=\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^5+\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^5\), then

1 \(\operatorname{Re}(\mathrm{z})=0\)
2 \(\operatorname{Im}(\mathrm{z})=0\)
3 \(\operatorname{Re}(\mathrm{z})>0, \operatorname{Im}(\mathrm{z})>0\)
4 \(\operatorname{Re}(\mathrm{z})>0, \operatorname{Im}(\mathrm{z})\lt 0\)
Binomial Theorem and its Simple Application

119317 The number of terms in the expansion of \((\mathrm{x}+\mathrm{y}+\mathrm{z})^{10}\) is

1 142
2 11
3 110
4 66
Binomial Theorem and its Simple Application

119318 The number of terms in the expansion of \(\left(x^2+y^2\right)^{25}-\left(x^2-y^2\right)^{25}\) after simplification is

1 0
2 26
3 13
4 50
Binomial Theorem and its Simple Application

119319 If \(\mathbf{n}\) is an odd positive integer and \(\left(1+x+x^2+\right.\) \(\left.x^3\right)^n=\sum_{r=0}^{3 n} a_r x^r\), then \(a_0-a_1+a_2-a_3+\ldots . .-a_{3 n}\) is

1 \(4^{\mathrm{n}}\)
2 1
3 -1
4 0
Binomial Theorem and its Simple Application

119320 The ninth term of the expansion \(\left(3 x-\frac{1}{2 x}\right)^8\) is

1 \(\frac{1}{512 \mathrm{x}^9}\)
2 \(\frac{-1}{512 \mathrm{x}^9}\)
3 \(\frac{-1}{256 x^8}\)
4 \(\frac{1}{256 \mathrm{x}^8}\)
Binomial Theorem and its Simple Application

119321 If \(z=\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^5+\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^5\), then

1 \(\operatorname{Re}(\mathrm{z})=0\)
2 \(\operatorname{Im}(\mathrm{z})=0\)
3 \(\operatorname{Re}(\mathrm{z})>0, \operatorname{Im}(\mathrm{z})>0\)
4 \(\operatorname{Re}(\mathrm{z})>0, \operatorname{Im}(\mathrm{z})\lt 0\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Binomial Theorem and its Simple Application

119317 The number of terms in the expansion of \((\mathrm{x}+\mathrm{y}+\mathrm{z})^{10}\) is

1 142
2 11
3 110
4 66
Binomial Theorem and its Simple Application

119318 The number of terms in the expansion of \(\left(x^2+y^2\right)^{25}-\left(x^2-y^2\right)^{25}\) after simplification is

1 0
2 26
3 13
4 50
Binomial Theorem and its Simple Application

119319 If \(\mathbf{n}\) is an odd positive integer and \(\left(1+x+x^2+\right.\) \(\left.x^3\right)^n=\sum_{r=0}^{3 n} a_r x^r\), then \(a_0-a_1+a_2-a_3+\ldots . .-a_{3 n}\) is

1 \(4^{\mathrm{n}}\)
2 1
3 -1
4 0
Binomial Theorem and its Simple Application

119320 The ninth term of the expansion \(\left(3 x-\frac{1}{2 x}\right)^8\) is

1 \(\frac{1}{512 \mathrm{x}^9}\)
2 \(\frac{-1}{512 \mathrm{x}^9}\)
3 \(\frac{-1}{256 x^8}\)
4 \(\frac{1}{256 \mathrm{x}^8}\)
Binomial Theorem and its Simple Application

119321 If \(z=\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^5+\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^5\), then

1 \(\operatorname{Re}(\mathrm{z})=0\)
2 \(\operatorname{Im}(\mathrm{z})=0\)
3 \(\operatorname{Re}(\mathrm{z})>0, \operatorname{Im}(\mathrm{z})>0\)
4 \(\operatorname{Re}(\mathrm{z})>0, \operatorname{Im}(\mathrm{z})\lt 0\)
Binomial Theorem and its Simple Application

119317 The number of terms in the expansion of \((\mathrm{x}+\mathrm{y}+\mathrm{z})^{10}\) is

1 142
2 11
3 110
4 66
Binomial Theorem and its Simple Application

119318 The number of terms in the expansion of \(\left(x^2+y^2\right)^{25}-\left(x^2-y^2\right)^{25}\) after simplification is

1 0
2 26
3 13
4 50
Binomial Theorem and its Simple Application

119319 If \(\mathbf{n}\) is an odd positive integer and \(\left(1+x+x^2+\right.\) \(\left.x^3\right)^n=\sum_{r=0}^{3 n} a_r x^r\), then \(a_0-a_1+a_2-a_3+\ldots . .-a_{3 n}\) is

1 \(4^{\mathrm{n}}\)
2 1
3 -1
4 0
Binomial Theorem and its Simple Application

119320 The ninth term of the expansion \(\left(3 x-\frac{1}{2 x}\right)^8\) is

1 \(\frac{1}{512 \mathrm{x}^9}\)
2 \(\frac{-1}{512 \mathrm{x}^9}\)
3 \(\frac{-1}{256 x^8}\)
4 \(\frac{1}{256 \mathrm{x}^8}\)
Binomial Theorem and its Simple Application

119321 If \(z=\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^5+\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^5\), then

1 \(\operatorname{Re}(\mathrm{z})=0\)
2 \(\operatorname{Im}(\mathrm{z})=0\)
3 \(\operatorname{Re}(\mathrm{z})>0, \operatorname{Im}(\mathrm{z})>0\)
4 \(\operatorname{Re}(\mathrm{z})>0, \operatorname{Im}(\mathrm{z})\lt 0\)