Miscellaneous 3-D Problems
Three Dimensional Geometry

121439 A straight line \(\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{a}}+\lambda \overrightarrow{\mathrm{b}}\) meets the plane \(\overrightarrow{\mathbf{r}} \cdot \hat{\mathbf{n}}=p\) in the point \(P\) whose position vector is :

1 \(\overrightarrow{\mathrm{a}}+\frac{\overrightarrow{\mathrm{a}} \cdot \hat{\mathrm{n}}}{\overrightarrow{\mathrm{b}} \cdot \hat{\mathrm{n}}} \overrightarrow{\mathrm{b}}\)
2 \(\vec{a}+\left(\frac{p-\vec{a} . \hat{n}}{\vec{b} . \hat{n}}\right) \vec{b}\)
3 \(\overrightarrow{\mathrm{a}}-\left(\frac{\overrightarrow{\mathrm{a}} . \hat{\mathrm{n}}}{\overrightarrow{\mathrm{b}} . \hat{\mathrm{n}}}\right) \overrightarrow{\mathrm{b}}\)
4 none of these
Three Dimensional Geometry

121445 If the \(2 x-5 y+z=8\) and \(2 \lambda x-15 y+\lambda z+6=0\) are parallel to each other, then value of \(\lambda\) is

1 \(\frac{1}{3}\)
2 -3
3 3
4 2
Three Dimensional Geometry

121426 The foot of the perpendicular from a point on the circle \(x^2+y^2=1, z=0\) to the plane \(2 x+3 y\) \(+z=6\) lies on which one of the following curves?

1 \((6 x+5 y-12)^2+4(3 x+7 y-8)^2=1, z=6-\) \(2 x-3 y\)
2 \((5 x+6 y-12)^2+4(3 x+5 y-9)^2=1, z=6-\) \(2 \mathrm{x}-3 \mathrm{y}\)
3 \((6 x+5 y-14)^2+9(3 x+5 y-7)^2=1, z=6-\) \(2 \mathrm{x}-3 \mathrm{y}\)
4 \((5 x+6 y-14)^2+9(3 x+7 y-8)^2=1, z=6-\) \(2 \mathrm{x}-3 \mathrm{y}\)
Three Dimensional Geometry

121439 A straight line \(\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{a}}+\lambda \overrightarrow{\mathrm{b}}\) meets the plane \(\overrightarrow{\mathbf{r}} \cdot \hat{\mathbf{n}}=p\) in the point \(P\) whose position vector is :

1 \(\overrightarrow{\mathrm{a}}+\frac{\overrightarrow{\mathrm{a}} \cdot \hat{\mathrm{n}}}{\overrightarrow{\mathrm{b}} \cdot \hat{\mathrm{n}}} \overrightarrow{\mathrm{b}}\)
2 \(\vec{a}+\left(\frac{p-\vec{a} . \hat{n}}{\vec{b} . \hat{n}}\right) \vec{b}\)
3 \(\overrightarrow{\mathrm{a}}-\left(\frac{\overrightarrow{\mathrm{a}} . \hat{\mathrm{n}}}{\overrightarrow{\mathrm{b}} . \hat{\mathrm{n}}}\right) \overrightarrow{\mathrm{b}}\)
4 none of these
Three Dimensional Geometry

121445 If the \(2 x-5 y+z=8\) and \(2 \lambda x-15 y+\lambda z+6=0\) are parallel to each other, then value of \(\lambda\) is

1 \(\frac{1}{3}\)
2 -3
3 3
4 2
Three Dimensional Geometry

121426 The foot of the perpendicular from a point on the circle \(x^2+y^2=1, z=0\) to the plane \(2 x+3 y\) \(+z=6\) lies on which one of the following curves?

1 \((6 x+5 y-12)^2+4(3 x+7 y-8)^2=1, z=6-\) \(2 x-3 y\)
2 \((5 x+6 y-12)^2+4(3 x+5 y-9)^2=1, z=6-\) \(2 \mathrm{x}-3 \mathrm{y}\)
3 \((6 x+5 y-14)^2+9(3 x+5 y-7)^2=1, z=6-\) \(2 \mathrm{x}-3 \mathrm{y}\)
4 \((5 x+6 y-14)^2+9(3 x+7 y-8)^2=1, z=6-\) \(2 \mathrm{x}-3 \mathrm{y}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Three Dimensional Geometry

121439 A straight line \(\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{a}}+\lambda \overrightarrow{\mathrm{b}}\) meets the plane \(\overrightarrow{\mathbf{r}} \cdot \hat{\mathbf{n}}=p\) in the point \(P\) whose position vector is :

1 \(\overrightarrow{\mathrm{a}}+\frac{\overrightarrow{\mathrm{a}} \cdot \hat{\mathrm{n}}}{\overrightarrow{\mathrm{b}} \cdot \hat{\mathrm{n}}} \overrightarrow{\mathrm{b}}\)
2 \(\vec{a}+\left(\frac{p-\vec{a} . \hat{n}}{\vec{b} . \hat{n}}\right) \vec{b}\)
3 \(\overrightarrow{\mathrm{a}}-\left(\frac{\overrightarrow{\mathrm{a}} . \hat{\mathrm{n}}}{\overrightarrow{\mathrm{b}} . \hat{\mathrm{n}}}\right) \overrightarrow{\mathrm{b}}\)
4 none of these
Three Dimensional Geometry

121445 If the \(2 x-5 y+z=8\) and \(2 \lambda x-15 y+\lambda z+6=0\) are parallel to each other, then value of \(\lambda\) is

1 \(\frac{1}{3}\)
2 -3
3 3
4 2
Three Dimensional Geometry

121426 The foot of the perpendicular from a point on the circle \(x^2+y^2=1, z=0\) to the plane \(2 x+3 y\) \(+z=6\) lies on which one of the following curves?

1 \((6 x+5 y-12)^2+4(3 x+7 y-8)^2=1, z=6-\) \(2 x-3 y\)
2 \((5 x+6 y-12)^2+4(3 x+5 y-9)^2=1, z=6-\) \(2 \mathrm{x}-3 \mathrm{y}\)
3 \((6 x+5 y-14)^2+9(3 x+5 y-7)^2=1, z=6-\) \(2 \mathrm{x}-3 \mathrm{y}\)
4 \((5 x+6 y-14)^2+9(3 x+7 y-8)^2=1, z=6-\) \(2 \mathrm{x}-3 \mathrm{y}\)