Distance and Image of a Point from a Plane
Three Dimensional Geometry

121396 If a plane \(\pi\) passes through the point \((-1,6,2)\) is perpendicular to the planes \(x+2 y+2 z-5=\) 0 and \(3 x+3 y+2 z-8=0\), then, the perpendicular distance from the point \((1,-1,1)\) to the plane \(\pi\) is

1 \(\frac{20}{\sqrt{29}}\)
2 \(\frac{21}{\sqrt{29}}\)
3 \(\frac{27}{\sqrt{29}}\)
4 \(\sqrt{29}\)
Three Dimensional Geometry

121355 The length of the perpendicular to the plane \(\overrightarrow{\mathbf{r}}(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})=14\) from the origin is

1 7 units
2 \(\sqrt{14}\) units
3 14 units
4 \(\sqrt{7}\) units
Three Dimensional Geometry

121357 The unit vector perpendicular to the plane \(4 x-3 y+12 z=15\) is

1 \(\frac{4 \hat{i}-3 \hat{j}+12 \hat{k}}{13}\)
2 \(\frac{-4 \hat{i}-3 \hat{j}+12 \hat{k}}{13}\)
3 \(\frac{4 \hat{i}+3 \hat{j}+12 \hat{k}}{13}\)
4 \(\frac{-4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+12 \hat{\mathrm{k}}}{13}\)
Three Dimensional Geometry

121361 Distance of the point \((2,3,4)\) from the plane \(3 x-6 y+2 z+11=0\) is

1 0
2 1
3 2
4 3
Three Dimensional Geometry

121396 If a plane \(\pi\) passes through the point \((-1,6,2)\) is perpendicular to the planes \(x+2 y+2 z-5=\) 0 and \(3 x+3 y+2 z-8=0\), then, the perpendicular distance from the point \((1,-1,1)\) to the plane \(\pi\) is

1 \(\frac{20}{\sqrt{29}}\)
2 \(\frac{21}{\sqrt{29}}\)
3 \(\frac{27}{\sqrt{29}}\)
4 \(\sqrt{29}\)
Three Dimensional Geometry

121355 The length of the perpendicular to the plane \(\overrightarrow{\mathbf{r}}(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})=14\) from the origin is

1 7 units
2 \(\sqrt{14}\) units
3 14 units
4 \(\sqrt{7}\) units
Three Dimensional Geometry

121357 The unit vector perpendicular to the plane \(4 x-3 y+12 z=15\) is

1 \(\frac{4 \hat{i}-3 \hat{j}+12 \hat{k}}{13}\)
2 \(\frac{-4 \hat{i}-3 \hat{j}+12 \hat{k}}{13}\)
3 \(\frac{4 \hat{i}+3 \hat{j}+12 \hat{k}}{13}\)
4 \(\frac{-4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+12 \hat{\mathrm{k}}}{13}\)
Three Dimensional Geometry

121361 Distance of the point \((2,3,4)\) from the plane \(3 x-6 y+2 z+11=0\) is

1 0
2 1
3 2
4 3
Three Dimensional Geometry

121396 If a plane \(\pi\) passes through the point \((-1,6,2)\) is perpendicular to the planes \(x+2 y+2 z-5=\) 0 and \(3 x+3 y+2 z-8=0\), then, the perpendicular distance from the point \((1,-1,1)\) to the plane \(\pi\) is

1 \(\frac{20}{\sqrt{29}}\)
2 \(\frac{21}{\sqrt{29}}\)
3 \(\frac{27}{\sqrt{29}}\)
4 \(\sqrt{29}\)
Three Dimensional Geometry

121355 The length of the perpendicular to the plane \(\overrightarrow{\mathbf{r}}(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})=14\) from the origin is

1 7 units
2 \(\sqrt{14}\) units
3 14 units
4 \(\sqrt{7}\) units
Three Dimensional Geometry

121357 The unit vector perpendicular to the plane \(4 x-3 y+12 z=15\) is

1 \(\frac{4 \hat{i}-3 \hat{j}+12 \hat{k}}{13}\)
2 \(\frac{-4 \hat{i}-3 \hat{j}+12 \hat{k}}{13}\)
3 \(\frac{4 \hat{i}+3 \hat{j}+12 \hat{k}}{13}\)
4 \(\frac{-4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+12 \hat{\mathrm{k}}}{13}\)
Three Dimensional Geometry

121361 Distance of the point \((2,3,4)\) from the plane \(3 x-6 y+2 z+11=0\) is

1 0
2 1
3 2
4 3
Three Dimensional Geometry

121396 If a plane \(\pi\) passes through the point \((-1,6,2)\) is perpendicular to the planes \(x+2 y+2 z-5=\) 0 and \(3 x+3 y+2 z-8=0\), then, the perpendicular distance from the point \((1,-1,1)\) to the plane \(\pi\) is

1 \(\frac{20}{\sqrt{29}}\)
2 \(\frac{21}{\sqrt{29}}\)
3 \(\frac{27}{\sqrt{29}}\)
4 \(\sqrt{29}\)
Three Dimensional Geometry

121355 The length of the perpendicular to the plane \(\overrightarrow{\mathbf{r}}(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})=14\) from the origin is

1 7 units
2 \(\sqrt{14}\) units
3 14 units
4 \(\sqrt{7}\) units
Three Dimensional Geometry

121357 The unit vector perpendicular to the plane \(4 x-3 y+12 z=15\) is

1 \(\frac{4 \hat{i}-3 \hat{j}+12 \hat{k}}{13}\)
2 \(\frac{-4 \hat{i}-3 \hat{j}+12 \hat{k}}{13}\)
3 \(\frac{4 \hat{i}+3 \hat{j}+12 \hat{k}}{13}\)
4 \(\frac{-4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+12 \hat{\mathrm{k}}}{13}\)
Three Dimensional Geometry

121361 Distance of the point \((2,3,4)\) from the plane \(3 x-6 y+2 z+11=0\) is

1 0
2 1
3 2
4 3