Angle Between Two Lines, Two Planes, a Line and a Plane
Three Dimensional Geometry

121316 If the angle \(\theta\) between the line \(\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}\) and the plane \(2 x-y+6 \sqrt{\lambda z}+4=0\) is such that \(\sin \theta=\frac{1}{3}\), then the value of \(\lambda\) is

1 \(\frac{-3}{5}\)
2 \(\frac{-5}{3}\)
3 \(\frac{5}{3}\)
4 \(\frac{3}{5}\)
Three Dimensional Geometry

121318 If the line passing through the origin makes angles \(\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \boldsymbol{\theta}_3\) with the planes XOY, YOZ, ZOX respectively, then

1 \(\sin ^2 \theta_1+\sin ^2 \theta_2=\cos ^2 \theta_3\)
2 \(\sin ^2 \theta_1+\sin ^2 \theta_2+\sin ^2 \theta_3=-1\)
3 \(\cos 2 \theta_1+\cos 2 \theta_2+\cos 2 \theta_3=1\)
4 \(\cos ^2 \theta_1+\cos ^2 \theta_2+\cos ^2 \theta_3=-1\)
Three Dimensional Geometry

121319 If lines \(\frac{2 x-4}{\lambda}=\frac{y-1}{2}=\frac{z-3}{1}\) and \(\frac{x-1}{1}=\frac{3 y-1}{\lambda}=\frac{z-2}{1}\) are perpendicular to each other, then \(\lambda=\)

1 6
2 \(-\frac{7}{6}\)
3 7
4 \(-\frac{6}{7}\)
Three Dimensional Geometry

121322 The angle between the lines
\(\overline{\mathbf{r}}=3 \hat{\mathbf{i}}+\mathbf{2} \mathbf{j}-\mathbf{4} \hat{\mathbf{k}}+\boldsymbol{\lambda}(\hat{\mathbf{i}}+\mathbf{2} \hat{\mathbf{j}}+\mathbf{2 \hat { k }})\)

1 \(\cos ^{-1}\left(\frac{18}{21}\right)\)
2 \(\cos ^{-1}\left(\frac{19}{21}\right)\)
3 \(\cos ^{-1}\left(\frac{20}{21}\right)\)
4 \(\cos ^{-1}\left(\frac{17}{21}\right)\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Three Dimensional Geometry

121316 If the angle \(\theta\) between the line \(\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}\) and the plane \(2 x-y+6 \sqrt{\lambda z}+4=0\) is such that \(\sin \theta=\frac{1}{3}\), then the value of \(\lambda\) is

1 \(\frac{-3}{5}\)
2 \(\frac{-5}{3}\)
3 \(\frac{5}{3}\)
4 \(\frac{3}{5}\)
Three Dimensional Geometry

121318 If the line passing through the origin makes angles \(\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \boldsymbol{\theta}_3\) with the planes XOY, YOZ, ZOX respectively, then

1 \(\sin ^2 \theta_1+\sin ^2 \theta_2=\cos ^2 \theta_3\)
2 \(\sin ^2 \theta_1+\sin ^2 \theta_2+\sin ^2 \theta_3=-1\)
3 \(\cos 2 \theta_1+\cos 2 \theta_2+\cos 2 \theta_3=1\)
4 \(\cos ^2 \theta_1+\cos ^2 \theta_2+\cos ^2 \theta_3=-1\)
Three Dimensional Geometry

121319 If lines \(\frac{2 x-4}{\lambda}=\frac{y-1}{2}=\frac{z-3}{1}\) and \(\frac{x-1}{1}=\frac{3 y-1}{\lambda}=\frac{z-2}{1}\) are perpendicular to each other, then \(\lambda=\)

1 6
2 \(-\frac{7}{6}\)
3 7
4 \(-\frac{6}{7}\)
Three Dimensional Geometry

121322 The angle between the lines
\(\overline{\mathbf{r}}=3 \hat{\mathbf{i}}+\mathbf{2} \mathbf{j}-\mathbf{4} \hat{\mathbf{k}}+\boldsymbol{\lambda}(\hat{\mathbf{i}}+\mathbf{2} \hat{\mathbf{j}}+\mathbf{2 \hat { k }})\)

1 \(\cos ^{-1}\left(\frac{18}{21}\right)\)
2 \(\cos ^{-1}\left(\frac{19}{21}\right)\)
3 \(\cos ^{-1}\left(\frac{20}{21}\right)\)
4 \(\cos ^{-1}\left(\frac{17}{21}\right)\)
Three Dimensional Geometry

121316 If the angle \(\theta\) between the line \(\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}\) and the plane \(2 x-y+6 \sqrt{\lambda z}+4=0\) is such that \(\sin \theta=\frac{1}{3}\), then the value of \(\lambda\) is

1 \(\frac{-3}{5}\)
2 \(\frac{-5}{3}\)
3 \(\frac{5}{3}\)
4 \(\frac{3}{5}\)
Three Dimensional Geometry

121318 If the line passing through the origin makes angles \(\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \boldsymbol{\theta}_3\) with the planes XOY, YOZ, ZOX respectively, then

1 \(\sin ^2 \theta_1+\sin ^2 \theta_2=\cos ^2 \theta_3\)
2 \(\sin ^2 \theta_1+\sin ^2 \theta_2+\sin ^2 \theta_3=-1\)
3 \(\cos 2 \theta_1+\cos 2 \theta_2+\cos 2 \theta_3=1\)
4 \(\cos ^2 \theta_1+\cos ^2 \theta_2+\cos ^2 \theta_3=-1\)
Three Dimensional Geometry

121319 If lines \(\frac{2 x-4}{\lambda}=\frac{y-1}{2}=\frac{z-3}{1}\) and \(\frac{x-1}{1}=\frac{3 y-1}{\lambda}=\frac{z-2}{1}\) are perpendicular to each other, then \(\lambda=\)

1 6
2 \(-\frac{7}{6}\)
3 7
4 \(-\frac{6}{7}\)
Three Dimensional Geometry

121322 The angle between the lines
\(\overline{\mathbf{r}}=3 \hat{\mathbf{i}}+\mathbf{2} \mathbf{j}-\mathbf{4} \hat{\mathbf{k}}+\boldsymbol{\lambda}(\hat{\mathbf{i}}+\mathbf{2} \hat{\mathbf{j}}+\mathbf{2 \hat { k }})\)

1 \(\cos ^{-1}\left(\frac{18}{21}\right)\)
2 \(\cos ^{-1}\left(\frac{19}{21}\right)\)
3 \(\cos ^{-1}\left(\frac{20}{21}\right)\)
4 \(\cos ^{-1}\left(\frac{17}{21}\right)\)
Three Dimensional Geometry

121316 If the angle \(\theta\) between the line \(\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}\) and the plane \(2 x-y+6 \sqrt{\lambda z}+4=0\) is such that \(\sin \theta=\frac{1}{3}\), then the value of \(\lambda\) is

1 \(\frac{-3}{5}\)
2 \(\frac{-5}{3}\)
3 \(\frac{5}{3}\)
4 \(\frac{3}{5}\)
Three Dimensional Geometry

121318 If the line passing through the origin makes angles \(\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \boldsymbol{\theta}_3\) with the planes XOY, YOZ, ZOX respectively, then

1 \(\sin ^2 \theta_1+\sin ^2 \theta_2=\cos ^2 \theta_3\)
2 \(\sin ^2 \theta_1+\sin ^2 \theta_2+\sin ^2 \theta_3=-1\)
3 \(\cos 2 \theta_1+\cos 2 \theta_2+\cos 2 \theta_3=1\)
4 \(\cos ^2 \theta_1+\cos ^2 \theta_2+\cos ^2 \theta_3=-1\)
Three Dimensional Geometry

121319 If lines \(\frac{2 x-4}{\lambda}=\frac{y-1}{2}=\frac{z-3}{1}\) and \(\frac{x-1}{1}=\frac{3 y-1}{\lambda}=\frac{z-2}{1}\) are perpendicular to each other, then \(\lambda=\)

1 6
2 \(-\frac{7}{6}\)
3 7
4 \(-\frac{6}{7}\)
Three Dimensional Geometry

121322 The angle between the lines
\(\overline{\mathbf{r}}=3 \hat{\mathbf{i}}+\mathbf{2} \mathbf{j}-\mathbf{4} \hat{\mathbf{k}}+\boldsymbol{\lambda}(\hat{\mathbf{i}}+\mathbf{2} \hat{\mathbf{j}}+\mathbf{2 \hat { k }})\)

1 \(\cos ^{-1}\left(\frac{18}{21}\right)\)
2 \(\cos ^{-1}\left(\frac{19}{21}\right)\)
3 \(\cos ^{-1}\left(\frac{20}{21}\right)\)
4 \(\cos ^{-1}\left(\frac{17}{21}\right)\)