Angle Between Two Lines, Two Planes, a Line and a Plane
Three Dimensional Geometry

121309 The angle between the lines \(\frac{x-1}{4}=\frac{y-3}{1}=\frac{z}{8}\) and \(\frac{x-2}{2}=\frac{y+1}{2}=\frac{z-4}{1}\) is

1 \(\cos ^{-1}\left(\frac{1}{3}\right)\)
2 \(\cos ^{-1}\left(\frac{3}{4}\right)\)
3 \(\cos ^{-1}\left(\frac{1}{2}\right)\)
4 \(\cos ^{-1}\left(\frac{2}{3}\right)\)
Three Dimensional Geometry

121312 The angle between the two lines \(\frac{x-4}{1}=\frac{y+4}{2}=\frac{z+1}{2}\) and \(\frac{x+1}{2}=\frac{y+3}{2}=\frac{z-4}{-1}\) is

1 \(\cos ^{-1}\left(\frac{1}{3}\right)\)
2 \(\cos ^{-1}\left(\frac{4}{9}\right)\)
3 \(\cos ^{-1}\left(\frac{5}{9}\right)\)
4 \(\cos ^{-1}\left(\frac{2}{9}\right)\)
Three Dimensional Geometry

121313 If the angle between the lines whose direction ratio are \(4,-3,5\) and \(3,4, \mathrm{k}\) is \(\frac{\pi}{3}\), then \(\mathrm{k}=\)

1 \(\pm 10\)
2 \(\pm 7\)
3 \(\pm 6\)
4 \(\pm 5\)
Three Dimensional Geometry

121314 The angle between the line \(\frac{x-1}{2}=\frac{y+3}{1}=\frac{z+7}{2}\) and the plane \(\overline{\mathbf{r}} \cdot(6 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})=5\) is

1 \(\cos ^{-1}\left(\frac{4}{21}\right)\)
2 \(\sin ^{-1}\left(\frac{4}{21}\right)\)
3 \(\sin ^{-1}\left(\frac{5}{7}\right)\)
4 \(\cos ^{-1}\left(\frac{5}{7}\right)\)
Three Dimensional Geometry

121315 If the line \(\frac{x-1}{4}=\frac{y-2}{2}=\frac{z-k}{-2}\) lies in the plane \(2 x+5 y-z=5\), then \(k=\)

1 10
2 7
3 -7
4 -10
Three Dimensional Geometry

121309 The angle between the lines \(\frac{x-1}{4}=\frac{y-3}{1}=\frac{z}{8}\) and \(\frac{x-2}{2}=\frac{y+1}{2}=\frac{z-4}{1}\) is

1 \(\cos ^{-1}\left(\frac{1}{3}\right)\)
2 \(\cos ^{-1}\left(\frac{3}{4}\right)\)
3 \(\cos ^{-1}\left(\frac{1}{2}\right)\)
4 \(\cos ^{-1}\left(\frac{2}{3}\right)\)
Three Dimensional Geometry

121312 The angle between the two lines \(\frac{x-4}{1}=\frac{y+4}{2}=\frac{z+1}{2}\) and \(\frac{x+1}{2}=\frac{y+3}{2}=\frac{z-4}{-1}\) is

1 \(\cos ^{-1}\left(\frac{1}{3}\right)\)
2 \(\cos ^{-1}\left(\frac{4}{9}\right)\)
3 \(\cos ^{-1}\left(\frac{5}{9}\right)\)
4 \(\cos ^{-1}\left(\frac{2}{9}\right)\)
Three Dimensional Geometry

121313 If the angle between the lines whose direction ratio are \(4,-3,5\) and \(3,4, \mathrm{k}\) is \(\frac{\pi}{3}\), then \(\mathrm{k}=\)

1 \(\pm 10\)
2 \(\pm 7\)
3 \(\pm 6\)
4 \(\pm 5\)
Three Dimensional Geometry

121314 The angle between the line \(\frac{x-1}{2}=\frac{y+3}{1}=\frac{z+7}{2}\) and the plane \(\overline{\mathbf{r}} \cdot(6 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})=5\) is

1 \(\cos ^{-1}\left(\frac{4}{21}\right)\)
2 \(\sin ^{-1}\left(\frac{4}{21}\right)\)
3 \(\sin ^{-1}\left(\frac{5}{7}\right)\)
4 \(\cos ^{-1}\left(\frac{5}{7}\right)\)
Three Dimensional Geometry

121315 If the line \(\frac{x-1}{4}=\frac{y-2}{2}=\frac{z-k}{-2}\) lies in the plane \(2 x+5 y-z=5\), then \(k=\)

1 10
2 7
3 -7
4 -10
Three Dimensional Geometry

121309 The angle between the lines \(\frac{x-1}{4}=\frac{y-3}{1}=\frac{z}{8}\) and \(\frac{x-2}{2}=\frac{y+1}{2}=\frac{z-4}{1}\) is

1 \(\cos ^{-1}\left(\frac{1}{3}\right)\)
2 \(\cos ^{-1}\left(\frac{3}{4}\right)\)
3 \(\cos ^{-1}\left(\frac{1}{2}\right)\)
4 \(\cos ^{-1}\left(\frac{2}{3}\right)\)
Three Dimensional Geometry

121312 The angle between the two lines \(\frac{x-4}{1}=\frac{y+4}{2}=\frac{z+1}{2}\) and \(\frac{x+1}{2}=\frac{y+3}{2}=\frac{z-4}{-1}\) is

1 \(\cos ^{-1}\left(\frac{1}{3}\right)\)
2 \(\cos ^{-1}\left(\frac{4}{9}\right)\)
3 \(\cos ^{-1}\left(\frac{5}{9}\right)\)
4 \(\cos ^{-1}\left(\frac{2}{9}\right)\)
Three Dimensional Geometry

121313 If the angle between the lines whose direction ratio are \(4,-3,5\) and \(3,4, \mathrm{k}\) is \(\frac{\pi}{3}\), then \(\mathrm{k}=\)

1 \(\pm 10\)
2 \(\pm 7\)
3 \(\pm 6\)
4 \(\pm 5\)
Three Dimensional Geometry

121314 The angle between the line \(\frac{x-1}{2}=\frac{y+3}{1}=\frac{z+7}{2}\) and the plane \(\overline{\mathbf{r}} \cdot(6 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})=5\) is

1 \(\cos ^{-1}\left(\frac{4}{21}\right)\)
2 \(\sin ^{-1}\left(\frac{4}{21}\right)\)
3 \(\sin ^{-1}\left(\frac{5}{7}\right)\)
4 \(\cos ^{-1}\left(\frac{5}{7}\right)\)
Three Dimensional Geometry

121315 If the line \(\frac{x-1}{4}=\frac{y-2}{2}=\frac{z-k}{-2}\) lies in the plane \(2 x+5 y-z=5\), then \(k=\)

1 10
2 7
3 -7
4 -10
Three Dimensional Geometry

121309 The angle between the lines \(\frac{x-1}{4}=\frac{y-3}{1}=\frac{z}{8}\) and \(\frac{x-2}{2}=\frac{y+1}{2}=\frac{z-4}{1}\) is

1 \(\cos ^{-1}\left(\frac{1}{3}\right)\)
2 \(\cos ^{-1}\left(\frac{3}{4}\right)\)
3 \(\cos ^{-1}\left(\frac{1}{2}\right)\)
4 \(\cos ^{-1}\left(\frac{2}{3}\right)\)
Three Dimensional Geometry

121312 The angle between the two lines \(\frac{x-4}{1}=\frac{y+4}{2}=\frac{z+1}{2}\) and \(\frac{x+1}{2}=\frac{y+3}{2}=\frac{z-4}{-1}\) is

1 \(\cos ^{-1}\left(\frac{1}{3}\right)\)
2 \(\cos ^{-1}\left(\frac{4}{9}\right)\)
3 \(\cos ^{-1}\left(\frac{5}{9}\right)\)
4 \(\cos ^{-1}\left(\frac{2}{9}\right)\)
Three Dimensional Geometry

121313 If the angle between the lines whose direction ratio are \(4,-3,5\) and \(3,4, \mathrm{k}\) is \(\frac{\pi}{3}\), then \(\mathrm{k}=\)

1 \(\pm 10\)
2 \(\pm 7\)
3 \(\pm 6\)
4 \(\pm 5\)
Three Dimensional Geometry

121314 The angle between the line \(\frac{x-1}{2}=\frac{y+3}{1}=\frac{z+7}{2}\) and the plane \(\overline{\mathbf{r}} \cdot(6 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})=5\) is

1 \(\cos ^{-1}\left(\frac{4}{21}\right)\)
2 \(\sin ^{-1}\left(\frac{4}{21}\right)\)
3 \(\sin ^{-1}\left(\frac{5}{7}\right)\)
4 \(\cos ^{-1}\left(\frac{5}{7}\right)\)
Three Dimensional Geometry

121315 If the line \(\frac{x-1}{4}=\frac{y-2}{2}=\frac{z-k}{-2}\) lies in the plane \(2 x+5 y-z=5\), then \(k=\)

1 10
2 7
3 -7
4 -10
Three Dimensional Geometry

121309 The angle between the lines \(\frac{x-1}{4}=\frac{y-3}{1}=\frac{z}{8}\) and \(\frac{x-2}{2}=\frac{y+1}{2}=\frac{z-4}{1}\) is

1 \(\cos ^{-1}\left(\frac{1}{3}\right)\)
2 \(\cos ^{-1}\left(\frac{3}{4}\right)\)
3 \(\cos ^{-1}\left(\frac{1}{2}\right)\)
4 \(\cos ^{-1}\left(\frac{2}{3}\right)\)
Three Dimensional Geometry

121312 The angle between the two lines \(\frac{x-4}{1}=\frac{y+4}{2}=\frac{z+1}{2}\) and \(\frac{x+1}{2}=\frac{y+3}{2}=\frac{z-4}{-1}\) is

1 \(\cos ^{-1}\left(\frac{1}{3}\right)\)
2 \(\cos ^{-1}\left(\frac{4}{9}\right)\)
3 \(\cos ^{-1}\left(\frac{5}{9}\right)\)
4 \(\cos ^{-1}\left(\frac{2}{9}\right)\)
Three Dimensional Geometry

121313 If the angle between the lines whose direction ratio are \(4,-3,5\) and \(3,4, \mathrm{k}\) is \(\frac{\pi}{3}\), then \(\mathrm{k}=\)

1 \(\pm 10\)
2 \(\pm 7\)
3 \(\pm 6\)
4 \(\pm 5\)
Three Dimensional Geometry

121314 The angle between the line \(\frac{x-1}{2}=\frac{y+3}{1}=\frac{z+7}{2}\) and the plane \(\overline{\mathbf{r}} \cdot(6 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})=5\) is

1 \(\cos ^{-1}\left(\frac{4}{21}\right)\)
2 \(\sin ^{-1}\left(\frac{4}{21}\right)\)
3 \(\sin ^{-1}\left(\frac{5}{7}\right)\)
4 \(\cos ^{-1}\left(\frac{5}{7}\right)\)
Three Dimensional Geometry

121315 If the line \(\frac{x-1}{4}=\frac{y-2}{2}=\frac{z-k}{-2}\) lies in the plane \(2 x+5 y-z=5\), then \(k=\)

1 10
2 7
3 -7
4 -10