Equation of a Line, Sphere, and a Plane in Different Forms
Three Dimensional Geometry

121271 The equation of the plane through intersection of planes \(x+2 y+3 z=4\) and \(2 x+y-z=-5\) and perpendicular to the plane
\(5 \mathrm{x}+3 \mathrm{y}-36 \mathrm{z}=-8\)

1 \(23 x+14 y-9 z=-48\)
2 \(51 \mathrm{x}+15 \mathrm{y}-50 \mathrm{z}=-173\)
3 \(7 x-2 y+3 z=-81\)
4 None of the above
Three Dimensional Geometry

121272 The lines
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3} \text { and } \frac{x-1}{-2}=\frac{y-2}{-4}=\frac{z-3}{-6}\)
are

1 skew
2 parallel
3 intersecting
4 coincident
Three Dimensional Geometry

121273 The equation of the plane passing through the line of intersection of the planes \(x+y+z=6\) and \(2 x+3 y+4 y+4 z+5=0\) and passing through \((1,1,1)\) is

1 \(x+y+z=3\)
2 \(2 x+3 y+4 z=9\)
3 \(20 \mathrm{x}+23 \mathrm{y}+26 \mathrm{z}=69\)
4 \(23 x+20 y+z=96\)
Three Dimensional Geometry

121274 The equation of a sphere having centre \((1,2,3)\) and radius 3 units is \(\qquad\)

1 \(x^2+y^2+z^2-2 x-4 y-6 z=0\)
2 \(x^2+y^2+z^2-2 x-4 y-6 z+5=0\)
3 \(x^2+y^2+z^2-2 x-4 y-6 z-5=0\)
4 None of these
Three Dimensional Geometry

121271 The equation of the plane through intersection of planes \(x+2 y+3 z=4\) and \(2 x+y-z=-5\) and perpendicular to the plane
\(5 \mathrm{x}+3 \mathrm{y}-36 \mathrm{z}=-8\)

1 \(23 x+14 y-9 z=-48\)
2 \(51 \mathrm{x}+15 \mathrm{y}-50 \mathrm{z}=-173\)
3 \(7 x-2 y+3 z=-81\)
4 None of the above
Three Dimensional Geometry

121272 The lines
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3} \text { and } \frac{x-1}{-2}=\frac{y-2}{-4}=\frac{z-3}{-6}\)
are

1 skew
2 parallel
3 intersecting
4 coincident
Three Dimensional Geometry

121273 The equation of the plane passing through the line of intersection of the planes \(x+y+z=6\) and \(2 x+3 y+4 y+4 z+5=0\) and passing through \((1,1,1)\) is

1 \(x+y+z=3\)
2 \(2 x+3 y+4 z=9\)
3 \(20 \mathrm{x}+23 \mathrm{y}+26 \mathrm{z}=69\)
4 \(23 x+20 y+z=96\)
Three Dimensional Geometry

121274 The equation of a sphere having centre \((1,2,3)\) and radius 3 units is \(\qquad\)

1 \(x^2+y^2+z^2-2 x-4 y-6 z=0\)
2 \(x^2+y^2+z^2-2 x-4 y-6 z+5=0\)
3 \(x^2+y^2+z^2-2 x-4 y-6 z-5=0\)
4 None of these
Three Dimensional Geometry

121271 The equation of the plane through intersection of planes \(x+2 y+3 z=4\) and \(2 x+y-z=-5\) and perpendicular to the plane
\(5 \mathrm{x}+3 \mathrm{y}-36 \mathrm{z}=-8\)

1 \(23 x+14 y-9 z=-48\)
2 \(51 \mathrm{x}+15 \mathrm{y}-50 \mathrm{z}=-173\)
3 \(7 x-2 y+3 z=-81\)
4 None of the above
Three Dimensional Geometry

121272 The lines
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3} \text { and } \frac{x-1}{-2}=\frac{y-2}{-4}=\frac{z-3}{-6}\)
are

1 skew
2 parallel
3 intersecting
4 coincident
Three Dimensional Geometry

121273 The equation of the plane passing through the line of intersection of the planes \(x+y+z=6\) and \(2 x+3 y+4 y+4 z+5=0\) and passing through \((1,1,1)\) is

1 \(x+y+z=3\)
2 \(2 x+3 y+4 z=9\)
3 \(20 \mathrm{x}+23 \mathrm{y}+26 \mathrm{z}=69\)
4 \(23 x+20 y+z=96\)
Three Dimensional Geometry

121274 The equation of a sphere having centre \((1,2,3)\) and radius 3 units is \(\qquad\)

1 \(x^2+y^2+z^2-2 x-4 y-6 z=0\)
2 \(x^2+y^2+z^2-2 x-4 y-6 z+5=0\)
3 \(x^2+y^2+z^2-2 x-4 y-6 z-5=0\)
4 None of these
Three Dimensional Geometry

121271 The equation of the plane through intersection of planes \(x+2 y+3 z=4\) and \(2 x+y-z=-5\) and perpendicular to the plane
\(5 \mathrm{x}+3 \mathrm{y}-36 \mathrm{z}=-8\)

1 \(23 x+14 y-9 z=-48\)
2 \(51 \mathrm{x}+15 \mathrm{y}-50 \mathrm{z}=-173\)
3 \(7 x-2 y+3 z=-81\)
4 None of the above
Three Dimensional Geometry

121272 The lines
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3} \text { and } \frac{x-1}{-2}=\frac{y-2}{-4}=\frac{z-3}{-6}\)
are

1 skew
2 parallel
3 intersecting
4 coincident
Three Dimensional Geometry

121273 The equation of the plane passing through the line of intersection of the planes \(x+y+z=6\) and \(2 x+3 y+4 y+4 z+5=0\) and passing through \((1,1,1)\) is

1 \(x+y+z=3\)
2 \(2 x+3 y+4 z=9\)
3 \(20 \mathrm{x}+23 \mathrm{y}+26 \mathrm{z}=69\)
4 \(23 x+20 y+z=96\)
Three Dimensional Geometry

121274 The equation of a sphere having centre \((1,2,3)\) and radius 3 units is \(\qquad\)

1 \(x^2+y^2+z^2-2 x-4 y-6 z=0\)
2 \(x^2+y^2+z^2-2 x-4 y-6 z+5=0\)
3 \(x^2+y^2+z^2-2 x-4 y-6 z-5=0\)
4 None of these
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here