Equation of a Line, Sphere, and a Plane in Different Forms
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Three Dimensional Geometry

121296 Two circles \(S_1=\mathbf{p x}^2+\mathbf{p y}^2+2 \mathrm{~g}^{\prime} \mathbf{x}+\mathbf{2} \mathrm{f}^{\prime} \mathbf{y}+\mathbf{d}=\mathbf{0}\) and \(S_2=x^2+y^2+2 g x+2 f y+d^{\prime}=0\) have a common chord \(P Q\). The equation of \(P Q\) is

1 \(\mathrm{S}_1-\mathrm{S}_2=0\)
2 \(\mathrm{S}_1+\mathrm{S}_2=0\)
3 \(\mathrm{S}_1-\mathrm{pS}_2=0\)
4 \(\mathrm{S}_1+\mathrm{pS}_2=0\)
Three Dimensional Geometry

121297 The Cartesian equation of a line \(2 x-3=3 y+1\) \(=5-6 \mathrm{z}\). The vector equation of the line passing through the point \((7,-5,0)\) and parallel to the given line is

1 \(\overrightarrow{\mathrm{r}}=(5 \hat{\mathrm{i}}-7 \hat{\mathrm{j}})+\lambda(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})\)
2 \(\vec{r}=(7 \hat{i}+5 \hat{j})+\lambda(3 \hat{i}-2 \hat{j}+\hat{k})\)
3 \(\overrightarrow{\mathrm{r}}=(7 \hat{\mathrm{i}}-5 \hat{\mathrm{j}})+\lambda(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})\)
4 \(\vec{r}=(-5 \hat{i}+7 \hat{j})+\lambda(-3 \hat{i}-2 \hat{j}-\hat{k})\)
Three Dimensional Geometry

121299 Equation of the plane passing through the intersection of the lines \(\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-5}{-3}\) and \(\frac{x+5}{3}=\frac{y-4}{-1}=\frac{z+3}{4}\) and parallel to the \(x y-\) plane is

1 \(z=4\)
2 \(z=2\)
3 \(\mathrm{z}=5\)
4 \(z=-5\)
Three Dimensional Geometry

121301 Find equation of the plane passing through the point \((2,1,3)\) and perpendicular to the planes \(x\) \(-2 y+2 z+3=0\) and \(3 x-2 y+4 z-4=0\).

1 \(2 x-y-2 z+3=0\)
2 \(x-2 y+2 z-3=0\)
3 \(2 x-y+2 z-3=0\)
4 \(2 x+y-2 z-3=0\)
Three Dimensional Geometry

121296 Two circles \(S_1=\mathbf{p x}^2+\mathbf{p y}^2+2 \mathrm{~g}^{\prime} \mathbf{x}+\mathbf{2} \mathrm{f}^{\prime} \mathbf{y}+\mathbf{d}=\mathbf{0}\) and \(S_2=x^2+y^2+2 g x+2 f y+d^{\prime}=0\) have a common chord \(P Q\). The equation of \(P Q\) is

1 \(\mathrm{S}_1-\mathrm{S}_2=0\)
2 \(\mathrm{S}_1+\mathrm{S}_2=0\)
3 \(\mathrm{S}_1-\mathrm{pS}_2=0\)
4 \(\mathrm{S}_1+\mathrm{pS}_2=0\)
Three Dimensional Geometry

121297 The Cartesian equation of a line \(2 x-3=3 y+1\) \(=5-6 \mathrm{z}\). The vector equation of the line passing through the point \((7,-5,0)\) and parallel to the given line is

1 \(\overrightarrow{\mathrm{r}}=(5 \hat{\mathrm{i}}-7 \hat{\mathrm{j}})+\lambda(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})\)
2 \(\vec{r}=(7 \hat{i}+5 \hat{j})+\lambda(3 \hat{i}-2 \hat{j}+\hat{k})\)
3 \(\overrightarrow{\mathrm{r}}=(7 \hat{\mathrm{i}}-5 \hat{\mathrm{j}})+\lambda(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})\)
4 \(\vec{r}=(-5 \hat{i}+7 \hat{j})+\lambda(-3 \hat{i}-2 \hat{j}-\hat{k})\)
Three Dimensional Geometry

121299 Equation of the plane passing through the intersection of the lines \(\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-5}{-3}\) and \(\frac{x+5}{3}=\frac{y-4}{-1}=\frac{z+3}{4}\) and parallel to the \(x y-\) plane is

1 \(z=4\)
2 \(z=2\)
3 \(\mathrm{z}=5\)
4 \(z=-5\)
Three Dimensional Geometry

121301 Find equation of the plane passing through the point \((2,1,3)\) and perpendicular to the planes \(x\) \(-2 y+2 z+3=0\) and \(3 x-2 y+4 z-4=0\).

1 \(2 x-y-2 z+3=0\)
2 \(x-2 y+2 z-3=0\)
3 \(2 x-y+2 z-3=0\)
4 \(2 x+y-2 z-3=0\)
Three Dimensional Geometry

121296 Two circles \(S_1=\mathbf{p x}^2+\mathbf{p y}^2+2 \mathrm{~g}^{\prime} \mathbf{x}+\mathbf{2} \mathrm{f}^{\prime} \mathbf{y}+\mathbf{d}=\mathbf{0}\) and \(S_2=x^2+y^2+2 g x+2 f y+d^{\prime}=0\) have a common chord \(P Q\). The equation of \(P Q\) is

1 \(\mathrm{S}_1-\mathrm{S}_2=0\)
2 \(\mathrm{S}_1+\mathrm{S}_2=0\)
3 \(\mathrm{S}_1-\mathrm{pS}_2=0\)
4 \(\mathrm{S}_1+\mathrm{pS}_2=0\)
Three Dimensional Geometry

121297 The Cartesian equation of a line \(2 x-3=3 y+1\) \(=5-6 \mathrm{z}\). The vector equation of the line passing through the point \((7,-5,0)\) and parallel to the given line is

1 \(\overrightarrow{\mathrm{r}}=(5 \hat{\mathrm{i}}-7 \hat{\mathrm{j}})+\lambda(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})\)
2 \(\vec{r}=(7 \hat{i}+5 \hat{j})+\lambda(3 \hat{i}-2 \hat{j}+\hat{k})\)
3 \(\overrightarrow{\mathrm{r}}=(7 \hat{\mathrm{i}}-5 \hat{\mathrm{j}})+\lambda(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})\)
4 \(\vec{r}=(-5 \hat{i}+7 \hat{j})+\lambda(-3 \hat{i}-2 \hat{j}-\hat{k})\)
Three Dimensional Geometry

121299 Equation of the plane passing through the intersection of the lines \(\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-5}{-3}\) and \(\frac{x+5}{3}=\frac{y-4}{-1}=\frac{z+3}{4}\) and parallel to the \(x y-\) plane is

1 \(z=4\)
2 \(z=2\)
3 \(\mathrm{z}=5\)
4 \(z=-5\)
Three Dimensional Geometry

121301 Find equation of the plane passing through the point \((2,1,3)\) and perpendicular to the planes \(x\) \(-2 y+2 z+3=0\) and \(3 x-2 y+4 z-4=0\).

1 \(2 x-y-2 z+3=0\)
2 \(x-2 y+2 z-3=0\)
3 \(2 x-y+2 z-3=0\)
4 \(2 x+y-2 z-3=0\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Three Dimensional Geometry

121296 Two circles \(S_1=\mathbf{p x}^2+\mathbf{p y}^2+2 \mathrm{~g}^{\prime} \mathbf{x}+\mathbf{2} \mathrm{f}^{\prime} \mathbf{y}+\mathbf{d}=\mathbf{0}\) and \(S_2=x^2+y^2+2 g x+2 f y+d^{\prime}=0\) have a common chord \(P Q\). The equation of \(P Q\) is

1 \(\mathrm{S}_1-\mathrm{S}_2=0\)
2 \(\mathrm{S}_1+\mathrm{S}_2=0\)
3 \(\mathrm{S}_1-\mathrm{pS}_2=0\)
4 \(\mathrm{S}_1+\mathrm{pS}_2=0\)
Three Dimensional Geometry

121297 The Cartesian equation of a line \(2 x-3=3 y+1\) \(=5-6 \mathrm{z}\). The vector equation of the line passing through the point \((7,-5,0)\) and parallel to the given line is

1 \(\overrightarrow{\mathrm{r}}=(5 \hat{\mathrm{i}}-7 \hat{\mathrm{j}})+\lambda(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})\)
2 \(\vec{r}=(7 \hat{i}+5 \hat{j})+\lambda(3 \hat{i}-2 \hat{j}+\hat{k})\)
3 \(\overrightarrow{\mathrm{r}}=(7 \hat{\mathrm{i}}-5 \hat{\mathrm{j}})+\lambda(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})\)
4 \(\vec{r}=(-5 \hat{i}+7 \hat{j})+\lambda(-3 \hat{i}-2 \hat{j}-\hat{k})\)
Three Dimensional Geometry

121299 Equation of the plane passing through the intersection of the lines \(\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-5}{-3}\) and \(\frac{x+5}{3}=\frac{y-4}{-1}=\frac{z+3}{4}\) and parallel to the \(x y-\) plane is

1 \(z=4\)
2 \(z=2\)
3 \(\mathrm{z}=5\)
4 \(z=-5\)
Three Dimensional Geometry

121301 Find equation of the plane passing through the point \((2,1,3)\) and perpendicular to the planes \(x\) \(-2 y+2 z+3=0\) and \(3 x-2 y+4 z-4=0\).

1 \(2 x-y-2 z+3=0\)
2 \(x-2 y+2 z-3=0\)
3 \(2 x-y+2 z-3=0\)
4 \(2 x+y-2 z-3=0\)