Explanation:
A Given,
\(\frac{\mathrm{x}-2}{3}=\frac{\mathrm{y}+1}{4}=\frac{\mathrm{z}-2}{12}\)
Let, \(\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}=r\)
Any point on equation (i) is \(\mathrm{P}(3 \mathrm{r}+2,4 \mathrm{r}-1,12 \mathrm{r}+2)\)
Point \(P\) lies on the equation
\(x-y+z=16\)
\(3 r+2-(4 r-1)+12 r+2=16\)
\(11 r+5=16\)
\(11 r=11\)
\(r=1\)
\(\therefore\) The line cuts the plane \((3+2,4-1,12+2)=(5,3,14)\) Thus line cuts the plane at \(\mathrm{P}(5,3,14)\) the distance of \(Q(1,0,2)\) from \(\mathrm{P}(5,3,14)\) the distance of \(\mathrm{Q}(1,0,2)\) from \(\mathrm{P}(5,3,14)\) is given by
\(P Q=\sqrt{(5-1)^2+(3-0)^2+(14-2)^2}\)
\(=\sqrt{16+9+144}\)
\(=\sqrt{169}\)Hence, \(P Q=13\) units.