Direction Angle, Direction Ratios and Direction Cosine
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Three Dimensional Geometry

121137 A line makes equal angles with the diagonals of a cube. What is the sine of the angle?

1 \(\sqrt{\frac{2}{3}}\)
2 \(\sqrt{\frac{1}{3}}\)
3 \(\sqrt{\frac{1}{2}}\)
4 None of the above
Three Dimensional Geometry

121139 If a line makes angles \(\alpha, \beta, \gamma\) with \(\mathbf{x}\)-axis, \(\mathbf{y}\)-axis and z-axis respectively, \(\sin ^2 \alpha+\sin ^2 \beta+\sin ^2 \gamma\)

1 1
2 2
3 3
4 -1
Three Dimensional Geometry

121140 The condition for the line \(l \mathrm{x}+\mathrm{my}+\mathrm{n}=0\) to be a normal to \(\frac{x^2}{25}+\frac{y^2}{9}=1\) is

1 \(\frac{l^2}{9}+\frac{\mathrm{m}^2}{25}=\frac{\mathrm{n}^2}{256}\)
2 \(\frac{9}{\mathrm{~m}^2}+\frac{25}{l^2}=\frac{256}{\mathrm{n}^2}\)
3 \(\frac{l^2}{9}-\frac{\mathrm{m}^2}{25}=\frac{\mathrm{n}^2}{256}\)
4 None of these
Three Dimensional Geometry

121141 The y-coordinate of a point \(P\) on the line joining \(A(7,2,1)\) and \(B(10,5,7)\) is 4 . Then, \(x\) and \(z\)-coordinates of the point are

1 \(x=9, z=5\)
2 \(x=3, z=7\)
3 \(x=2, z=3\)
4 None of these
Three Dimensional Geometry

121137 A line makes equal angles with the diagonals of a cube. What is the sine of the angle?

1 \(\sqrt{\frac{2}{3}}\)
2 \(\sqrt{\frac{1}{3}}\)
3 \(\sqrt{\frac{1}{2}}\)
4 None of the above
Three Dimensional Geometry

121139 If a line makes angles \(\alpha, \beta, \gamma\) with \(\mathbf{x}\)-axis, \(\mathbf{y}\)-axis and z-axis respectively, \(\sin ^2 \alpha+\sin ^2 \beta+\sin ^2 \gamma\)

1 1
2 2
3 3
4 -1
Three Dimensional Geometry

121140 The condition for the line \(l \mathrm{x}+\mathrm{my}+\mathrm{n}=0\) to be a normal to \(\frac{x^2}{25}+\frac{y^2}{9}=1\) is

1 \(\frac{l^2}{9}+\frac{\mathrm{m}^2}{25}=\frac{\mathrm{n}^2}{256}\)
2 \(\frac{9}{\mathrm{~m}^2}+\frac{25}{l^2}=\frac{256}{\mathrm{n}^2}\)
3 \(\frac{l^2}{9}-\frac{\mathrm{m}^2}{25}=\frac{\mathrm{n}^2}{256}\)
4 None of these
Three Dimensional Geometry

121141 The y-coordinate of a point \(P\) on the line joining \(A(7,2,1)\) and \(B(10,5,7)\) is 4 . Then, \(x\) and \(z\)-coordinates of the point are

1 \(x=9, z=5\)
2 \(x=3, z=7\)
3 \(x=2, z=3\)
4 None of these
Three Dimensional Geometry

121137 A line makes equal angles with the diagonals of a cube. What is the sine of the angle?

1 \(\sqrt{\frac{2}{3}}\)
2 \(\sqrt{\frac{1}{3}}\)
3 \(\sqrt{\frac{1}{2}}\)
4 None of the above
Three Dimensional Geometry

121139 If a line makes angles \(\alpha, \beta, \gamma\) with \(\mathbf{x}\)-axis, \(\mathbf{y}\)-axis and z-axis respectively, \(\sin ^2 \alpha+\sin ^2 \beta+\sin ^2 \gamma\)

1 1
2 2
3 3
4 -1
Three Dimensional Geometry

121140 The condition for the line \(l \mathrm{x}+\mathrm{my}+\mathrm{n}=0\) to be a normal to \(\frac{x^2}{25}+\frac{y^2}{9}=1\) is

1 \(\frac{l^2}{9}+\frac{\mathrm{m}^2}{25}=\frac{\mathrm{n}^2}{256}\)
2 \(\frac{9}{\mathrm{~m}^2}+\frac{25}{l^2}=\frac{256}{\mathrm{n}^2}\)
3 \(\frac{l^2}{9}-\frac{\mathrm{m}^2}{25}=\frac{\mathrm{n}^2}{256}\)
4 None of these
Three Dimensional Geometry

121141 The y-coordinate of a point \(P\) on the line joining \(A(7,2,1)\) and \(B(10,5,7)\) is 4 . Then, \(x\) and \(z\)-coordinates of the point are

1 \(x=9, z=5\)
2 \(x=3, z=7\)
3 \(x=2, z=3\)
4 None of these
Three Dimensional Geometry

121137 A line makes equal angles with the diagonals of a cube. What is the sine of the angle?

1 \(\sqrt{\frac{2}{3}}\)
2 \(\sqrt{\frac{1}{3}}\)
3 \(\sqrt{\frac{1}{2}}\)
4 None of the above
Three Dimensional Geometry

121139 If a line makes angles \(\alpha, \beta, \gamma\) with \(\mathbf{x}\)-axis, \(\mathbf{y}\)-axis and z-axis respectively, \(\sin ^2 \alpha+\sin ^2 \beta+\sin ^2 \gamma\)

1 1
2 2
3 3
4 -1
Three Dimensional Geometry

121140 The condition for the line \(l \mathrm{x}+\mathrm{my}+\mathrm{n}=0\) to be a normal to \(\frac{x^2}{25}+\frac{y^2}{9}=1\) is

1 \(\frac{l^2}{9}+\frac{\mathrm{m}^2}{25}=\frac{\mathrm{n}^2}{256}\)
2 \(\frac{9}{\mathrm{~m}^2}+\frac{25}{l^2}=\frac{256}{\mathrm{n}^2}\)
3 \(\frac{l^2}{9}-\frac{\mathrm{m}^2}{25}=\frac{\mathrm{n}^2}{256}\)
4 None of these
Three Dimensional Geometry

121141 The y-coordinate of a point \(P\) on the line joining \(A(7,2,1)\) and \(B(10,5,7)\) is 4 . Then, \(x\) and \(z\)-coordinates of the point are

1 \(x=9, z=5\)
2 \(x=3, z=7\)
3 \(x=2, z=3\)
4 None of these