Co-ordinate of a Point in Space
Three Dimensional Geometry

121080 Find the co-ordinates of the foot of the perpendicular drawn from the origin to the plane \(5 y+8=0\).

1 \(\left(0,-\frac{18}{5}, 2\right)\)
2 \(\left(0, \frac{8}{5}, 2\right)\)
3 \(\left(\frac{8}{25}, 0,0\right)\)
4 \(\left(0,-\frac{8}{5}, 0\right)\)
Three Dimensional Geometry

121081 The distance of the point \(P(a, b, c)\) from the \(x-\) axis is

1 \(\sqrt{a^2+b^2}\)
2 \(\sqrt{\mathrm{b}^2+\mathrm{c}^2}\)
3 a
4 \(\sqrt{a^2+c^2}\)
Three Dimensional Geometry

121082 Find the coordinates of the point where the line joining the points \((2,-3,1)\) and \((3,-4,-5)\) cuts the plane \(2 x+y+z=7\).

1 \((1,2,-7)\)
2 \((1,-2,7)\)
3 \((-1,-2,7)\)
4 \((1,2,7)\)
Three Dimensional Geometry

121083 The coordinates of the point where the line through the points \(A(3,4,1)\) and \(B(5,1,6)\) crosses the \(\mathrm{XY}\)-plane are

1 \(\left(\frac{13}{5}, \frac{23}{5}, 0\right)\)
2 \(\left(-\frac{13}{5}, \frac{23}{5}, 0\right)\)
3 \(\left(\frac{13}{5},-\frac{23}{5}, 0\right)\)
4 \(\left(-\frac{13}{5}, \frac{-23}{5}, 0\right)\)
Three Dimensional Geometry

121084 If the plane \(2 x+3 y+5 z=1\) intersect the coordinate axes at the points \(A, B, C\) then the centroid of \(\triangle \mathrm{ABC}\) is

1 \((2,3,5)\)
2 \(\left(\frac{3}{2}, 1, \frac{3}{5}\right)\)
3 \(\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{5}\right)\)
4 \(\left(\frac{1}{6}, \frac{1}{9}, \frac{1}{15}\right)\)
Three Dimensional Geometry

121080 Find the co-ordinates of the foot of the perpendicular drawn from the origin to the plane \(5 y+8=0\).

1 \(\left(0,-\frac{18}{5}, 2\right)\)
2 \(\left(0, \frac{8}{5}, 2\right)\)
3 \(\left(\frac{8}{25}, 0,0\right)\)
4 \(\left(0,-\frac{8}{5}, 0\right)\)
Three Dimensional Geometry

121081 The distance of the point \(P(a, b, c)\) from the \(x-\) axis is

1 \(\sqrt{a^2+b^2}\)
2 \(\sqrt{\mathrm{b}^2+\mathrm{c}^2}\)
3 a
4 \(\sqrt{a^2+c^2}\)
Three Dimensional Geometry

121082 Find the coordinates of the point where the line joining the points \((2,-3,1)\) and \((3,-4,-5)\) cuts the plane \(2 x+y+z=7\).

1 \((1,2,-7)\)
2 \((1,-2,7)\)
3 \((-1,-2,7)\)
4 \((1,2,7)\)
Three Dimensional Geometry

121083 The coordinates of the point where the line through the points \(A(3,4,1)\) and \(B(5,1,6)\) crosses the \(\mathrm{XY}\)-plane are

1 \(\left(\frac{13}{5}, \frac{23}{5}, 0\right)\)
2 \(\left(-\frac{13}{5}, \frac{23}{5}, 0\right)\)
3 \(\left(\frac{13}{5},-\frac{23}{5}, 0\right)\)
4 \(\left(-\frac{13}{5}, \frac{-23}{5}, 0\right)\)
Three Dimensional Geometry

121084 If the plane \(2 x+3 y+5 z=1\) intersect the coordinate axes at the points \(A, B, C\) then the centroid of \(\triangle \mathrm{ABC}\) is

1 \((2,3,5)\)
2 \(\left(\frac{3}{2}, 1, \frac{3}{5}\right)\)
3 \(\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{5}\right)\)
4 \(\left(\frac{1}{6}, \frac{1}{9}, \frac{1}{15}\right)\)
Three Dimensional Geometry

121080 Find the co-ordinates of the foot of the perpendicular drawn from the origin to the plane \(5 y+8=0\).

1 \(\left(0,-\frac{18}{5}, 2\right)\)
2 \(\left(0, \frac{8}{5}, 2\right)\)
3 \(\left(\frac{8}{25}, 0,0\right)\)
4 \(\left(0,-\frac{8}{5}, 0\right)\)
Three Dimensional Geometry

121081 The distance of the point \(P(a, b, c)\) from the \(x-\) axis is

1 \(\sqrt{a^2+b^2}\)
2 \(\sqrt{\mathrm{b}^2+\mathrm{c}^2}\)
3 a
4 \(\sqrt{a^2+c^2}\)
Three Dimensional Geometry

121082 Find the coordinates of the point where the line joining the points \((2,-3,1)\) and \((3,-4,-5)\) cuts the plane \(2 x+y+z=7\).

1 \((1,2,-7)\)
2 \((1,-2,7)\)
3 \((-1,-2,7)\)
4 \((1,2,7)\)
Three Dimensional Geometry

121083 The coordinates of the point where the line through the points \(A(3,4,1)\) and \(B(5,1,6)\) crosses the \(\mathrm{XY}\)-plane are

1 \(\left(\frac{13}{5}, \frac{23}{5}, 0\right)\)
2 \(\left(-\frac{13}{5}, \frac{23}{5}, 0\right)\)
3 \(\left(\frac{13}{5},-\frac{23}{5}, 0\right)\)
4 \(\left(-\frac{13}{5}, \frac{-23}{5}, 0\right)\)
Three Dimensional Geometry

121084 If the plane \(2 x+3 y+5 z=1\) intersect the coordinate axes at the points \(A, B, C\) then the centroid of \(\triangle \mathrm{ABC}\) is

1 \((2,3,5)\)
2 \(\left(\frac{3}{2}, 1, \frac{3}{5}\right)\)
3 \(\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{5}\right)\)
4 \(\left(\frac{1}{6}, \frac{1}{9}, \frac{1}{15}\right)\)
Three Dimensional Geometry

121080 Find the co-ordinates of the foot of the perpendicular drawn from the origin to the plane \(5 y+8=0\).

1 \(\left(0,-\frac{18}{5}, 2\right)\)
2 \(\left(0, \frac{8}{5}, 2\right)\)
3 \(\left(\frac{8}{25}, 0,0\right)\)
4 \(\left(0,-\frac{8}{5}, 0\right)\)
Three Dimensional Geometry

121081 The distance of the point \(P(a, b, c)\) from the \(x-\) axis is

1 \(\sqrt{a^2+b^2}\)
2 \(\sqrt{\mathrm{b}^2+\mathrm{c}^2}\)
3 a
4 \(\sqrt{a^2+c^2}\)
Three Dimensional Geometry

121082 Find the coordinates of the point where the line joining the points \((2,-3,1)\) and \((3,-4,-5)\) cuts the plane \(2 x+y+z=7\).

1 \((1,2,-7)\)
2 \((1,-2,7)\)
3 \((-1,-2,7)\)
4 \((1,2,7)\)
Three Dimensional Geometry

121083 The coordinates of the point where the line through the points \(A(3,4,1)\) and \(B(5,1,6)\) crosses the \(\mathrm{XY}\)-plane are

1 \(\left(\frac{13}{5}, \frac{23}{5}, 0\right)\)
2 \(\left(-\frac{13}{5}, \frac{23}{5}, 0\right)\)
3 \(\left(\frac{13}{5},-\frac{23}{5}, 0\right)\)
4 \(\left(-\frac{13}{5}, \frac{-23}{5}, 0\right)\)
Three Dimensional Geometry

121084 If the plane \(2 x+3 y+5 z=1\) intersect the coordinate axes at the points \(A, B, C\) then the centroid of \(\triangle \mathrm{ABC}\) is

1 \((2,3,5)\)
2 \(\left(\frac{3}{2}, 1, \frac{3}{5}\right)\)
3 \(\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{5}\right)\)
4 \(\left(\frac{1}{6}, \frac{1}{9}, \frac{1}{15}\right)\)
Three Dimensional Geometry

121080 Find the co-ordinates of the foot of the perpendicular drawn from the origin to the plane \(5 y+8=0\).

1 \(\left(0,-\frac{18}{5}, 2\right)\)
2 \(\left(0, \frac{8}{5}, 2\right)\)
3 \(\left(\frac{8}{25}, 0,0\right)\)
4 \(\left(0,-\frac{8}{5}, 0\right)\)
Three Dimensional Geometry

121081 The distance of the point \(P(a, b, c)\) from the \(x-\) axis is

1 \(\sqrt{a^2+b^2}\)
2 \(\sqrt{\mathrm{b}^2+\mathrm{c}^2}\)
3 a
4 \(\sqrt{a^2+c^2}\)
Three Dimensional Geometry

121082 Find the coordinates of the point where the line joining the points \((2,-3,1)\) and \((3,-4,-5)\) cuts the plane \(2 x+y+z=7\).

1 \((1,2,-7)\)
2 \((1,-2,7)\)
3 \((-1,-2,7)\)
4 \((1,2,7)\)
Three Dimensional Geometry

121083 The coordinates of the point where the line through the points \(A(3,4,1)\) and \(B(5,1,6)\) crosses the \(\mathrm{XY}\)-plane are

1 \(\left(\frac{13}{5}, \frac{23}{5}, 0\right)\)
2 \(\left(-\frac{13}{5}, \frac{23}{5}, 0\right)\)
3 \(\left(\frac{13}{5},-\frac{23}{5}, 0\right)\)
4 \(\left(-\frac{13}{5}, \frac{-23}{5}, 0\right)\)
Three Dimensional Geometry

121084 If the plane \(2 x+3 y+5 z=1\) intersect the coordinate axes at the points \(A, B, C\) then the centroid of \(\triangle \mathrm{ABC}\) is

1 \((2,3,5)\)
2 \(\left(\frac{3}{2}, 1, \frac{3}{5}\right)\)
3 \(\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{5}\right)\)
4 \(\left(\frac{1}{6}, \frac{1}{9}, \frac{1}{15}\right)\)