Different Cases of Two Circles
Conic Section

120004 If \(x^2+y^2+6 x+2 k y+25=0\) to touch \(Y\)-axis, then \(\mathrm{k}=\)

1 \(\pm 20\)
2 \(-1,-5\)
3 \(\pm 5\)
4 4
Conic Section

120005 If one end of diameter of the circle \(x^2+y^2-4 x-6 y+11=0\) is \((3,4)\) then the other end of the diameter is

1 \((0,1)\)
2 \((1,1)\)
3 \((1,2)\)
4 \((1,0)\)
Conic Section

120014 The common tangent to the circles \(x^2+y^2=4\) and \(x^2+y^2+6 x+8 y-24=0\) also passes through the point

1 \((6,-2)\)
2 \((4,-2)\)
3 \((-6,4)\)
4 \((-4,6)\)
Conic Section

119978 The locus of the centre of a circle which touches externally the circle \(x^2+y^2-6 x-6 y+\) \(14=0\) and also touches the \(y\)-axis is given by the equation

1 \(x^2-6 x-10 y+14=0\)
2 \(x^2-10 x-6 y+14=0\)
3 \(y^2-6 x-10 y+14=0\)
4 \(y^2-10 x-6 y+14=0\)
Conic Section

119979 If the circles \(x^2+y^2+2 x+2 k y+6=0, x^2+y^2+\) \(2 \mathrm{ky}+\mathrm{k}=\mathbf{0}\) intersect orthogonally, then \(\mathrm{k}\) : is

1 2 (or) \(\frac{-3}{2}\)
2 -2 (or) \(\frac{-3}{2}\)
3 2 (or) \(\frac{3}{2}\)
4 -2 (or) \(\frac{3}{2}\)
Conic Section

120004 If \(x^2+y^2+6 x+2 k y+25=0\) to touch \(Y\)-axis, then \(\mathrm{k}=\)

1 \(\pm 20\)
2 \(-1,-5\)
3 \(\pm 5\)
4 4
Conic Section

120005 If one end of diameter of the circle \(x^2+y^2-4 x-6 y+11=0\) is \((3,4)\) then the other end of the diameter is

1 \((0,1)\)
2 \((1,1)\)
3 \((1,2)\)
4 \((1,0)\)
Conic Section

120014 The common tangent to the circles \(x^2+y^2=4\) and \(x^2+y^2+6 x+8 y-24=0\) also passes through the point

1 \((6,-2)\)
2 \((4,-2)\)
3 \((-6,4)\)
4 \((-4,6)\)
Conic Section

119978 The locus of the centre of a circle which touches externally the circle \(x^2+y^2-6 x-6 y+\) \(14=0\) and also touches the \(y\)-axis is given by the equation

1 \(x^2-6 x-10 y+14=0\)
2 \(x^2-10 x-6 y+14=0\)
3 \(y^2-6 x-10 y+14=0\)
4 \(y^2-10 x-6 y+14=0\)
Conic Section

119979 If the circles \(x^2+y^2+2 x+2 k y+6=0, x^2+y^2+\) \(2 \mathrm{ky}+\mathrm{k}=\mathbf{0}\) intersect orthogonally, then \(\mathrm{k}\) : is

1 2 (or) \(\frac{-3}{2}\)
2 -2 (or) \(\frac{-3}{2}\)
3 2 (or) \(\frac{3}{2}\)
4 -2 (or) \(\frac{3}{2}\)
Conic Section

120004 If \(x^2+y^2+6 x+2 k y+25=0\) to touch \(Y\)-axis, then \(\mathrm{k}=\)

1 \(\pm 20\)
2 \(-1,-5\)
3 \(\pm 5\)
4 4
Conic Section

120005 If one end of diameter of the circle \(x^2+y^2-4 x-6 y+11=0\) is \((3,4)\) then the other end of the diameter is

1 \((0,1)\)
2 \((1,1)\)
3 \((1,2)\)
4 \((1,0)\)
Conic Section

120014 The common tangent to the circles \(x^2+y^2=4\) and \(x^2+y^2+6 x+8 y-24=0\) also passes through the point

1 \((6,-2)\)
2 \((4,-2)\)
3 \((-6,4)\)
4 \((-4,6)\)
Conic Section

119978 The locus of the centre of a circle which touches externally the circle \(x^2+y^2-6 x-6 y+\) \(14=0\) and also touches the \(y\)-axis is given by the equation

1 \(x^2-6 x-10 y+14=0\)
2 \(x^2-10 x-6 y+14=0\)
3 \(y^2-6 x-10 y+14=0\)
4 \(y^2-10 x-6 y+14=0\)
Conic Section

119979 If the circles \(x^2+y^2+2 x+2 k y+6=0, x^2+y^2+\) \(2 \mathrm{ky}+\mathrm{k}=\mathbf{0}\) intersect orthogonally, then \(\mathrm{k}\) : is

1 2 (or) \(\frac{-3}{2}\)
2 -2 (or) \(\frac{-3}{2}\)
3 2 (or) \(\frac{3}{2}\)
4 -2 (or) \(\frac{3}{2}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Conic Section

120004 If \(x^2+y^2+6 x+2 k y+25=0\) to touch \(Y\)-axis, then \(\mathrm{k}=\)

1 \(\pm 20\)
2 \(-1,-5\)
3 \(\pm 5\)
4 4
Conic Section

120005 If one end of diameter of the circle \(x^2+y^2-4 x-6 y+11=0\) is \((3,4)\) then the other end of the diameter is

1 \((0,1)\)
2 \((1,1)\)
3 \((1,2)\)
4 \((1,0)\)
Conic Section

120014 The common tangent to the circles \(x^2+y^2=4\) and \(x^2+y^2+6 x+8 y-24=0\) also passes through the point

1 \((6,-2)\)
2 \((4,-2)\)
3 \((-6,4)\)
4 \((-4,6)\)
Conic Section

119978 The locus of the centre of a circle which touches externally the circle \(x^2+y^2-6 x-6 y+\) \(14=0\) and also touches the \(y\)-axis is given by the equation

1 \(x^2-6 x-10 y+14=0\)
2 \(x^2-10 x-6 y+14=0\)
3 \(y^2-6 x-10 y+14=0\)
4 \(y^2-10 x-6 y+14=0\)
Conic Section

119979 If the circles \(x^2+y^2+2 x+2 k y+6=0, x^2+y^2+\) \(2 \mathrm{ky}+\mathrm{k}=\mathbf{0}\) intersect orthogonally, then \(\mathrm{k}\) : is

1 2 (or) \(\frac{-3}{2}\)
2 -2 (or) \(\frac{-3}{2}\)
3 2 (or) \(\frac{3}{2}\)
4 -2 (or) \(\frac{3}{2}\)
Conic Section

120004 If \(x^2+y^2+6 x+2 k y+25=0\) to touch \(Y\)-axis, then \(\mathrm{k}=\)

1 \(\pm 20\)
2 \(-1,-5\)
3 \(\pm 5\)
4 4
Conic Section

120005 If one end of diameter of the circle \(x^2+y^2-4 x-6 y+11=0\) is \((3,4)\) then the other end of the diameter is

1 \((0,1)\)
2 \((1,1)\)
3 \((1,2)\)
4 \((1,0)\)
Conic Section

120014 The common tangent to the circles \(x^2+y^2=4\) and \(x^2+y^2+6 x+8 y-24=0\) also passes through the point

1 \((6,-2)\)
2 \((4,-2)\)
3 \((-6,4)\)
4 \((-4,6)\)
Conic Section

119978 The locus of the centre of a circle which touches externally the circle \(x^2+y^2-6 x-6 y+\) \(14=0\) and also touches the \(y\)-axis is given by the equation

1 \(x^2-6 x-10 y+14=0\)
2 \(x^2-10 x-6 y+14=0\)
3 \(y^2-6 x-10 y+14=0\)
4 \(y^2-10 x-6 y+14=0\)
Conic Section

119979 If the circles \(x^2+y^2+2 x+2 k y+6=0, x^2+y^2+\) \(2 \mathrm{ky}+\mathrm{k}=\mathbf{0}\) intersect orthogonally, then \(\mathrm{k}\) : is

1 2 (or) \(\frac{-3}{2}\)
2 -2 (or) \(\frac{-3}{2}\)
3 2 (or) \(\frac{3}{2}\)
4 -2 (or) \(\frac{3}{2}\)