Tangent and Normal to Circle
Conic Section

119869 If the tangents drawn at the point \(O(0,0)\) and \(P(1+\sqrt{5}, 2)\) on the circle \(x^2+y^2-2 x-4 y=0\) intersect at the point \(Q\), then the area of the triangle \(O P Q\) is equal to:

1 \(\frac{3+\sqrt{5}}{2}\)
2 \(\frac{4+2 \sqrt{5}}{2}\)
3 \(\frac{5+3 \sqrt{5}}{2}\)
4 \(\frac{7+3 \sqrt{5}}{2}\)
Conic Section

119870 If \(y=m_1 x+c_1\) and \(y=m_2 x+c_2, m_1 \neq m_2\) are two common tangents of circle \(x^2+y^2=2\) and parabola \(y^2=x\), then the value of \(8\left|m_1 m_2\right|\) is equal to

1 \(3+4 \sqrt{2}\)
2 \(-5+6 \sqrt{2}\)
3 \(-4+3 \sqrt{2}\)
4 \(7+6 \sqrt{2}\)
Conic Section

119871 Let a circle \(C\) touch the lines \(L_1: 4 x-3 y+K_1=\) 0 and \(L_2: 4 x-3 y+K_2=0, K_1, K_2 \in R\). If a line passing through the centre of the circle \(C\) intersects \(L_1\) at \((-1,2)\) and \(L_2\) at \((3,-6)\), then the equation of the circle \(C\) is

1 \((x-1)^2+(y-2)^2=4\)
2 \((x+1)^2+(y-2)^2=4\)
3 \((x-1)^2+(y+2)^2=16\)
4 \((x-1)^2+(y-2)^2=16\)
Conic Section

119872 The equations of the tangent to the circle \(5 x^2+\) \(5 y^2=1\) parallel to the line \(3 x+4 y=1\) are

1 \(3 x+4 y= \pm 2 \sqrt{5}\)
2 \(3 x+4 y= \pm \sqrt{5}\)
3 \(6 x+8 y= \pm \sqrt{5}\)
4 \(3 x+4 y= \pm 3 \sqrt{5}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Conic Section

119869 If the tangents drawn at the point \(O(0,0)\) and \(P(1+\sqrt{5}, 2)\) on the circle \(x^2+y^2-2 x-4 y=0\) intersect at the point \(Q\), then the area of the triangle \(O P Q\) is equal to:

1 \(\frac{3+\sqrt{5}}{2}\)
2 \(\frac{4+2 \sqrt{5}}{2}\)
3 \(\frac{5+3 \sqrt{5}}{2}\)
4 \(\frac{7+3 \sqrt{5}}{2}\)
Conic Section

119870 If \(y=m_1 x+c_1\) and \(y=m_2 x+c_2, m_1 \neq m_2\) are two common tangents of circle \(x^2+y^2=2\) and parabola \(y^2=x\), then the value of \(8\left|m_1 m_2\right|\) is equal to

1 \(3+4 \sqrt{2}\)
2 \(-5+6 \sqrt{2}\)
3 \(-4+3 \sqrt{2}\)
4 \(7+6 \sqrt{2}\)
Conic Section

119871 Let a circle \(C\) touch the lines \(L_1: 4 x-3 y+K_1=\) 0 and \(L_2: 4 x-3 y+K_2=0, K_1, K_2 \in R\). If a line passing through the centre of the circle \(C\) intersects \(L_1\) at \((-1,2)\) and \(L_2\) at \((3,-6)\), then the equation of the circle \(C\) is

1 \((x-1)^2+(y-2)^2=4\)
2 \((x+1)^2+(y-2)^2=4\)
3 \((x-1)^2+(y+2)^2=16\)
4 \((x-1)^2+(y-2)^2=16\)
Conic Section

119872 The equations of the tangent to the circle \(5 x^2+\) \(5 y^2=1\) parallel to the line \(3 x+4 y=1\) are

1 \(3 x+4 y= \pm 2 \sqrt{5}\)
2 \(3 x+4 y= \pm \sqrt{5}\)
3 \(6 x+8 y= \pm \sqrt{5}\)
4 \(3 x+4 y= \pm 3 \sqrt{5}\)
Conic Section

119869 If the tangents drawn at the point \(O(0,0)\) and \(P(1+\sqrt{5}, 2)\) on the circle \(x^2+y^2-2 x-4 y=0\) intersect at the point \(Q\), then the area of the triangle \(O P Q\) is equal to:

1 \(\frac{3+\sqrt{5}}{2}\)
2 \(\frac{4+2 \sqrt{5}}{2}\)
3 \(\frac{5+3 \sqrt{5}}{2}\)
4 \(\frac{7+3 \sqrt{5}}{2}\)
Conic Section

119870 If \(y=m_1 x+c_1\) and \(y=m_2 x+c_2, m_1 \neq m_2\) are two common tangents of circle \(x^2+y^2=2\) and parabola \(y^2=x\), then the value of \(8\left|m_1 m_2\right|\) is equal to

1 \(3+4 \sqrt{2}\)
2 \(-5+6 \sqrt{2}\)
3 \(-4+3 \sqrt{2}\)
4 \(7+6 \sqrt{2}\)
Conic Section

119871 Let a circle \(C\) touch the lines \(L_1: 4 x-3 y+K_1=\) 0 and \(L_2: 4 x-3 y+K_2=0, K_1, K_2 \in R\). If a line passing through the centre of the circle \(C\) intersects \(L_1\) at \((-1,2)\) and \(L_2\) at \((3,-6)\), then the equation of the circle \(C\) is

1 \((x-1)^2+(y-2)^2=4\)
2 \((x+1)^2+(y-2)^2=4\)
3 \((x-1)^2+(y+2)^2=16\)
4 \((x-1)^2+(y-2)^2=16\)
Conic Section

119872 The equations of the tangent to the circle \(5 x^2+\) \(5 y^2=1\) parallel to the line \(3 x+4 y=1\) are

1 \(3 x+4 y= \pm 2 \sqrt{5}\)
2 \(3 x+4 y= \pm \sqrt{5}\)
3 \(6 x+8 y= \pm \sqrt{5}\)
4 \(3 x+4 y= \pm 3 \sqrt{5}\)
Conic Section

119869 If the tangents drawn at the point \(O(0,0)\) and \(P(1+\sqrt{5}, 2)\) on the circle \(x^2+y^2-2 x-4 y=0\) intersect at the point \(Q\), then the area of the triangle \(O P Q\) is equal to:

1 \(\frac{3+\sqrt{5}}{2}\)
2 \(\frac{4+2 \sqrt{5}}{2}\)
3 \(\frac{5+3 \sqrt{5}}{2}\)
4 \(\frac{7+3 \sqrt{5}}{2}\)
Conic Section

119870 If \(y=m_1 x+c_1\) and \(y=m_2 x+c_2, m_1 \neq m_2\) are two common tangents of circle \(x^2+y^2=2\) and parabola \(y^2=x\), then the value of \(8\left|m_1 m_2\right|\) is equal to

1 \(3+4 \sqrt{2}\)
2 \(-5+6 \sqrt{2}\)
3 \(-4+3 \sqrt{2}\)
4 \(7+6 \sqrt{2}\)
Conic Section

119871 Let a circle \(C\) touch the lines \(L_1: 4 x-3 y+K_1=\) 0 and \(L_2: 4 x-3 y+K_2=0, K_1, K_2 \in R\). If a line passing through the centre of the circle \(C\) intersects \(L_1\) at \((-1,2)\) and \(L_2\) at \((3,-6)\), then the equation of the circle \(C\) is

1 \((x-1)^2+(y-2)^2=4\)
2 \((x+1)^2+(y-2)^2=4\)
3 \((x-1)^2+(y+2)^2=16\)
4 \((x-1)^2+(y-2)^2=16\)
Conic Section

119872 The equations of the tangent to the circle \(5 x^2+\) \(5 y^2=1\) parallel to the line \(3 x+4 y=1\) are

1 \(3 x+4 y= \pm 2 \sqrt{5}\)
2 \(3 x+4 y= \pm \sqrt{5}\)
3 \(6 x+8 y= \pm \sqrt{5}\)
4 \(3 x+4 y= \pm 3 \sqrt{5}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here