119851
Given : A circle, \(2 x^2+2 y^2=5\) and parabola \(y^2=4 \sqrt{5} x\).
Statement-I: An equation of a common tangent to these curves is \(y=x+\sqrt{5}\)
Statement-II: If the line, \(y=m x+\frac{\sqrt{5}}{m}(m \neq 0)\) is their common tangent, then \(m\) satisfies \(\mathbf{m}^4-3 m^2+\mathbf{2}=0\)
119851
Given : A circle, \(2 x^2+2 y^2=5\) and parabola \(y^2=4 \sqrt{5} x\).
Statement-I: An equation of a common tangent to these curves is \(y=x+\sqrt{5}\)
Statement-II: If the line, \(y=m x+\frac{\sqrt{5}}{m}(m \neq 0)\) is their common tangent, then \(m\) satisfies \(\mathbf{m}^4-3 m^2+\mathbf{2}=0\)
119851
Given : A circle, \(2 x^2+2 y^2=5\) and parabola \(y^2=4 \sqrt{5} x\).
Statement-I: An equation of a common tangent to these curves is \(y=x+\sqrt{5}\)
Statement-II: If the line, \(y=m x+\frac{\sqrt{5}}{m}(m \neq 0)\) is their common tangent, then \(m\) satisfies \(\mathbf{m}^4-3 m^2+\mathbf{2}=0\)
119851
Given : A circle, \(2 x^2+2 y^2=5\) and parabola \(y^2=4 \sqrt{5} x\).
Statement-I: An equation of a common tangent to these curves is \(y=x+\sqrt{5}\)
Statement-II: If the line, \(y=m x+\frac{\sqrt{5}}{m}(m \neq 0)\) is their common tangent, then \(m\) satisfies \(\mathbf{m}^4-3 m^2+\mathbf{2}=0\)