Tangent and Normal to Circle
Conic Section

119904 The circle \(x^2+y^2=4 x+8 y+5\) intersects the line \(3 x-4 y=m\) at two distinct points, if

1 \(-85\lt \mathrm{m}\lt -35\)
2 \(-35\lt \mathrm{m}\lt 15\)
3 \(15\lt \mathrm{m}\lt 65\)
4 \(35\lt \mathrm{m}\lt 85\)
[-2010]
Conic Section

119905 If a circle \(C\) passing through the point \((4,0)\) touches the circle \(x^2+y^2+4 x-6 y=12\) externally at the point \((1,-1)\), then radius of \(C\) is

1 5
2 \(2 \sqrt{5}\)
3 \(\sqrt{57}\)
4 4
Conic Section

119906 The straight line \(x+2 y=1\) meets the coordinate axes at \(A\) and \(B\). A circle is drawn through A, B and the origin. Then, the sum of perpendicular distances from \(A\) and \(B\) on the tangent to the circle at the origin is

1 \(2 \sqrt{5}\)
2 \(\frac{\sqrt{5}}{4}\)
3 \(4 \sqrt{5}\)
4 \(\frac{\sqrt{5}}{2}\)
Conic Section

119907 Equation of a common tangent to the circle, \(x^2\) \(+y^2-6 x=0\) and the parabola, \(y^2=4 x\), is

1 \(\sqrt{3} y=3 x+1\)
2 \(2 \sqrt{3} y=12 x+1\)
3 \(\sqrt{3} y=x+3\)
4 \(2 \sqrt{3} y=-x-12\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Conic Section

119904 The circle \(x^2+y^2=4 x+8 y+5\) intersects the line \(3 x-4 y=m\) at two distinct points, if

1 \(-85\lt \mathrm{m}\lt -35\)
2 \(-35\lt \mathrm{m}\lt 15\)
3 \(15\lt \mathrm{m}\lt 65\)
4 \(35\lt \mathrm{m}\lt 85\)
[-2010]
Conic Section

119905 If a circle \(C\) passing through the point \((4,0)\) touches the circle \(x^2+y^2+4 x-6 y=12\) externally at the point \((1,-1)\), then radius of \(C\) is

1 5
2 \(2 \sqrt{5}\)
3 \(\sqrt{57}\)
4 4
Conic Section

119906 The straight line \(x+2 y=1\) meets the coordinate axes at \(A\) and \(B\). A circle is drawn through A, B and the origin. Then, the sum of perpendicular distances from \(A\) and \(B\) on the tangent to the circle at the origin is

1 \(2 \sqrt{5}\)
2 \(\frac{\sqrt{5}}{4}\)
3 \(4 \sqrt{5}\)
4 \(\frac{\sqrt{5}}{2}\)
Conic Section

119907 Equation of a common tangent to the circle, \(x^2\) \(+y^2-6 x=0\) and the parabola, \(y^2=4 x\), is

1 \(\sqrt{3} y=3 x+1\)
2 \(2 \sqrt{3} y=12 x+1\)
3 \(\sqrt{3} y=x+3\)
4 \(2 \sqrt{3} y=-x-12\)
Conic Section

119904 The circle \(x^2+y^2=4 x+8 y+5\) intersects the line \(3 x-4 y=m\) at two distinct points, if

1 \(-85\lt \mathrm{m}\lt -35\)
2 \(-35\lt \mathrm{m}\lt 15\)
3 \(15\lt \mathrm{m}\lt 65\)
4 \(35\lt \mathrm{m}\lt 85\)
[-2010]
Conic Section

119905 If a circle \(C\) passing through the point \((4,0)\) touches the circle \(x^2+y^2+4 x-6 y=12\) externally at the point \((1,-1)\), then radius of \(C\) is

1 5
2 \(2 \sqrt{5}\)
3 \(\sqrt{57}\)
4 4
Conic Section

119906 The straight line \(x+2 y=1\) meets the coordinate axes at \(A\) and \(B\). A circle is drawn through A, B and the origin. Then, the sum of perpendicular distances from \(A\) and \(B\) on the tangent to the circle at the origin is

1 \(2 \sqrt{5}\)
2 \(\frac{\sqrt{5}}{4}\)
3 \(4 \sqrt{5}\)
4 \(\frac{\sqrt{5}}{2}\)
Conic Section

119907 Equation of a common tangent to the circle, \(x^2\) \(+y^2-6 x=0\) and the parabola, \(y^2=4 x\), is

1 \(\sqrt{3} y=3 x+1\)
2 \(2 \sqrt{3} y=12 x+1\)
3 \(\sqrt{3} y=x+3\)
4 \(2 \sqrt{3} y=-x-12\)
Conic Section

119904 The circle \(x^2+y^2=4 x+8 y+5\) intersects the line \(3 x-4 y=m\) at two distinct points, if

1 \(-85\lt \mathrm{m}\lt -35\)
2 \(-35\lt \mathrm{m}\lt 15\)
3 \(15\lt \mathrm{m}\lt 65\)
4 \(35\lt \mathrm{m}\lt 85\)
[-2010]
Conic Section

119905 If a circle \(C\) passing through the point \((4,0)\) touches the circle \(x^2+y^2+4 x-6 y=12\) externally at the point \((1,-1)\), then radius of \(C\) is

1 5
2 \(2 \sqrt{5}\)
3 \(\sqrt{57}\)
4 4
Conic Section

119906 The straight line \(x+2 y=1\) meets the coordinate axes at \(A\) and \(B\). A circle is drawn through A, B and the origin. Then, the sum of perpendicular distances from \(A\) and \(B\) on the tangent to the circle at the origin is

1 \(2 \sqrt{5}\)
2 \(\frac{\sqrt{5}}{4}\)
3 \(4 \sqrt{5}\)
4 \(\frac{\sqrt{5}}{2}\)
Conic Section

119907 Equation of a common tangent to the circle, \(x^2\) \(+y^2-6 x=0\) and the parabola, \(y^2=4 x\), is

1 \(\sqrt{3} y=3 x+1\)
2 \(2 \sqrt{3} y=12 x+1\)
3 \(\sqrt{3} y=x+3\)
4 \(2 \sqrt{3} y=-x-12\)