Tangent and Normal to Circle
Conic Section

119973 If the straight lines \(x-4 y+7=0\) and \(3 x-12 y\) \(+11=0\) are tangents to a circle. Then, the radius of the circle is

1 \(\frac{10}{3 \sqrt{17}}\)
2 \(\frac{5}{3 \sqrt{7}}\)
3 \(\frac{15}{\sqrt{17}}\)
4 \(\frac{5}{3 \sqrt{17}}\)
5 \(\frac{5}{3 \sqrt{13}}\)
Conic Section

119844 The equation of the tangent to the circle \(x^2+y^2\) \(=25\) at \((4,3)\) is

1 \(4 x-3 y=25\)
2 \(4 x+3 y=25\)
3 \(4 x+3 y=126\)
4 \(4 x+3 y=9\)
Conic Section

119845 A tangent is drawn to the circle \(2 x^2+2 y^2-3 x+4 y=0\) at the point ' \(A\) ' and it meets the line \(x+y=3\) at \(B(2,1)\), then \(A B=\)

1 \(\sqrt{10}\)
2 2
3 \(2 \sqrt{2}\)
4 0
Conic Section

119852 The sum of the minimum distance and the maximum distance from the point \((4,-3)\) to the circle \(x^2+y^2+4 x-10 y-7=0\) is

1 20
2 12
3 10
4 16
Conic Section

119846 The equations of the two tangents from \((-5,-4)\) to the circle \(x^2+y^2+4 x+6 y+8=0\) are

1 \(x-7 y=23,6 x+13 y=4\)
2 \(\mathrm{x}+2 \mathrm{y}+13=0,2 \mathrm{x}-\mathrm{y}+6=0\)
3 \(2 x+y+13=0, x-2 y=6\)
4 \(3 x+2 y+23=0,2 x-3 y+4=0\)
Conic Section

119973 If the straight lines \(x-4 y+7=0\) and \(3 x-12 y\) \(+11=0\) are tangents to a circle. Then, the radius of the circle is

1 \(\frac{10}{3 \sqrt{17}}\)
2 \(\frac{5}{3 \sqrt{7}}\)
3 \(\frac{15}{\sqrt{17}}\)
4 \(\frac{5}{3 \sqrt{17}}\)
5 \(\frac{5}{3 \sqrt{13}}\)
Conic Section

119844 The equation of the tangent to the circle \(x^2+y^2\) \(=25\) at \((4,3)\) is

1 \(4 x-3 y=25\)
2 \(4 x+3 y=25\)
3 \(4 x+3 y=126\)
4 \(4 x+3 y=9\)
Conic Section

119845 A tangent is drawn to the circle \(2 x^2+2 y^2-3 x+4 y=0\) at the point ' \(A\) ' and it meets the line \(x+y=3\) at \(B(2,1)\), then \(A B=\)

1 \(\sqrt{10}\)
2 2
3 \(2 \sqrt{2}\)
4 0
Conic Section

119852 The sum of the minimum distance and the maximum distance from the point \((4,-3)\) to the circle \(x^2+y^2+4 x-10 y-7=0\) is

1 20
2 12
3 10
4 16
Conic Section

119846 The equations of the two tangents from \((-5,-4)\) to the circle \(x^2+y^2+4 x+6 y+8=0\) are

1 \(x-7 y=23,6 x+13 y=4\)
2 \(\mathrm{x}+2 \mathrm{y}+13=0,2 \mathrm{x}-\mathrm{y}+6=0\)
3 \(2 x+y+13=0, x-2 y=6\)
4 \(3 x+2 y+23=0,2 x-3 y+4=0\)
Conic Section

119973 If the straight lines \(x-4 y+7=0\) and \(3 x-12 y\) \(+11=0\) are tangents to a circle. Then, the radius of the circle is

1 \(\frac{10}{3 \sqrt{17}}\)
2 \(\frac{5}{3 \sqrt{7}}\)
3 \(\frac{15}{\sqrt{17}}\)
4 \(\frac{5}{3 \sqrt{17}}\)
5 \(\frac{5}{3 \sqrt{13}}\)
Conic Section

119844 The equation of the tangent to the circle \(x^2+y^2\) \(=25\) at \((4,3)\) is

1 \(4 x-3 y=25\)
2 \(4 x+3 y=25\)
3 \(4 x+3 y=126\)
4 \(4 x+3 y=9\)
Conic Section

119845 A tangent is drawn to the circle \(2 x^2+2 y^2-3 x+4 y=0\) at the point ' \(A\) ' and it meets the line \(x+y=3\) at \(B(2,1)\), then \(A B=\)

1 \(\sqrt{10}\)
2 2
3 \(2 \sqrt{2}\)
4 0
Conic Section

119852 The sum of the minimum distance and the maximum distance from the point \((4,-3)\) to the circle \(x^2+y^2+4 x-10 y-7=0\) is

1 20
2 12
3 10
4 16
Conic Section

119846 The equations of the two tangents from \((-5,-4)\) to the circle \(x^2+y^2+4 x+6 y+8=0\) are

1 \(x-7 y=23,6 x+13 y=4\)
2 \(\mathrm{x}+2 \mathrm{y}+13=0,2 \mathrm{x}-\mathrm{y}+6=0\)
3 \(2 x+y+13=0, x-2 y=6\)
4 \(3 x+2 y+23=0,2 x-3 y+4=0\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Conic Section

119973 If the straight lines \(x-4 y+7=0\) and \(3 x-12 y\) \(+11=0\) are tangents to a circle. Then, the radius of the circle is

1 \(\frac{10}{3 \sqrt{17}}\)
2 \(\frac{5}{3 \sqrt{7}}\)
3 \(\frac{15}{\sqrt{17}}\)
4 \(\frac{5}{3 \sqrt{17}}\)
5 \(\frac{5}{3 \sqrt{13}}\)
Conic Section

119844 The equation of the tangent to the circle \(x^2+y^2\) \(=25\) at \((4,3)\) is

1 \(4 x-3 y=25\)
2 \(4 x+3 y=25\)
3 \(4 x+3 y=126\)
4 \(4 x+3 y=9\)
Conic Section

119845 A tangent is drawn to the circle \(2 x^2+2 y^2-3 x+4 y=0\) at the point ' \(A\) ' and it meets the line \(x+y=3\) at \(B(2,1)\), then \(A B=\)

1 \(\sqrt{10}\)
2 2
3 \(2 \sqrt{2}\)
4 0
Conic Section

119852 The sum of the minimum distance and the maximum distance from the point \((4,-3)\) to the circle \(x^2+y^2+4 x-10 y-7=0\) is

1 20
2 12
3 10
4 16
Conic Section

119846 The equations of the two tangents from \((-5,-4)\) to the circle \(x^2+y^2+4 x+6 y+8=0\) are

1 \(x-7 y=23,6 x+13 y=4\)
2 \(\mathrm{x}+2 \mathrm{y}+13=0,2 \mathrm{x}-\mathrm{y}+6=0\)
3 \(2 x+y+13=0, x-2 y=6\)
4 \(3 x+2 y+23=0,2 x-3 y+4=0\)
Conic Section

119973 If the straight lines \(x-4 y+7=0\) and \(3 x-12 y\) \(+11=0\) are tangents to a circle. Then, the radius of the circle is

1 \(\frac{10}{3 \sqrt{17}}\)
2 \(\frac{5}{3 \sqrt{7}}\)
3 \(\frac{15}{\sqrt{17}}\)
4 \(\frac{5}{3 \sqrt{17}}\)
5 \(\frac{5}{3 \sqrt{13}}\)
Conic Section

119844 The equation of the tangent to the circle \(x^2+y^2\) \(=25\) at \((4,3)\) is

1 \(4 x-3 y=25\)
2 \(4 x+3 y=25\)
3 \(4 x+3 y=126\)
4 \(4 x+3 y=9\)
Conic Section

119845 A tangent is drawn to the circle \(2 x^2+2 y^2-3 x+4 y=0\) at the point ' \(A\) ' and it meets the line \(x+y=3\) at \(B(2,1)\), then \(A B=\)

1 \(\sqrt{10}\)
2 2
3 \(2 \sqrt{2}\)
4 0
Conic Section

119852 The sum of the minimum distance and the maximum distance from the point \((4,-3)\) to the circle \(x^2+y^2+4 x-10 y-7=0\) is

1 20
2 12
3 10
4 16
Conic Section

119846 The equations of the two tangents from \((-5,-4)\) to the circle \(x^2+y^2+4 x+6 y+8=0\) are

1 \(x-7 y=23,6 x+13 y=4\)
2 \(\mathrm{x}+2 \mathrm{y}+13=0,2 \mathrm{x}-\mathrm{y}+6=0\)
3 \(2 x+y+13=0, x-2 y=6\)
4 \(3 x+2 y+23=0,2 x-3 y+4=0\)