Equation of Circle in Different Forms
Conic Section

119748 The equation of that diameter of the circle \(x^2+\) \(y^2-6 x+2 y-8=0\) which passes through the origin, is

1 \(x+3 y=0\)
2 \(3 x-y=0\)
3 \(6 x-y=0\)
4 \(3 x+2 y=0\)
Conic Section

119749 For a circle \(x^2+y^2=81\). What is the equation of chord whose mid-point is \((-2,3)\) ?

1 \(2 x-3 y+13=0\)
2 \(3 x-2 y+13=0\)
3 \(2 \mathrm{x}-3 \mathrm{y}-13=0\)
4 \(2 x+3 y+13=0\)
Conic Section

119750 If the line \(x+2 k y+3=0\) is a diameter of the circle \(x^2+y^2-6 x+2 y=0\), then \(k\) is equal to

1 3
2 -5
3 -1
4 5
Conic Section

119751 The parametric equations of the circle \(\mathbf{x}^2+\mathbf{y}^2+\) \(\mathbf{m x}+\mathbf{m y}=0\) are

1 \(x=-\frac{m}{2}+\frac{m}{\sqrt{2}} \cos \theta, y=\frac{m}{2}+\frac{m}{\sqrt{2}} \sin \theta\)
2 \(\mathrm{x}=-\frac{\mathrm{m}}{2}+\frac{\mathrm{m}}{\sqrt{2}} \cos \theta, \mathrm{y}=-\frac{\mathrm{m}}{2}+\frac{\mathrm{m}}{\sqrt{2}} \sin \theta\)
3 \(x=0, y=0\)
4 None of the above
Conic Section

119748 The equation of that diameter of the circle \(x^2+\) \(y^2-6 x+2 y-8=0\) which passes through the origin, is

1 \(x+3 y=0\)
2 \(3 x-y=0\)
3 \(6 x-y=0\)
4 \(3 x+2 y=0\)
Conic Section

119749 For a circle \(x^2+y^2=81\). What is the equation of chord whose mid-point is \((-2,3)\) ?

1 \(2 x-3 y+13=0\)
2 \(3 x-2 y+13=0\)
3 \(2 \mathrm{x}-3 \mathrm{y}-13=0\)
4 \(2 x+3 y+13=0\)
Conic Section

119750 If the line \(x+2 k y+3=0\) is a diameter of the circle \(x^2+y^2-6 x+2 y=0\), then \(k\) is equal to

1 3
2 -5
3 -1
4 5
Conic Section

119751 The parametric equations of the circle \(\mathbf{x}^2+\mathbf{y}^2+\) \(\mathbf{m x}+\mathbf{m y}=0\) are

1 \(x=-\frac{m}{2}+\frac{m}{\sqrt{2}} \cos \theta, y=\frac{m}{2}+\frac{m}{\sqrt{2}} \sin \theta\)
2 \(\mathrm{x}=-\frac{\mathrm{m}}{2}+\frac{\mathrm{m}}{\sqrt{2}} \cos \theta, \mathrm{y}=-\frac{\mathrm{m}}{2}+\frac{\mathrm{m}}{\sqrt{2}} \sin \theta\)
3 \(x=0, y=0\)
4 None of the above
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Conic Section

119748 The equation of that diameter of the circle \(x^2+\) \(y^2-6 x+2 y-8=0\) which passes through the origin, is

1 \(x+3 y=0\)
2 \(3 x-y=0\)
3 \(6 x-y=0\)
4 \(3 x+2 y=0\)
Conic Section

119749 For a circle \(x^2+y^2=81\). What is the equation of chord whose mid-point is \((-2,3)\) ?

1 \(2 x-3 y+13=0\)
2 \(3 x-2 y+13=0\)
3 \(2 \mathrm{x}-3 \mathrm{y}-13=0\)
4 \(2 x+3 y+13=0\)
Conic Section

119750 If the line \(x+2 k y+3=0\) is a diameter of the circle \(x^2+y^2-6 x+2 y=0\), then \(k\) is equal to

1 3
2 -5
3 -1
4 5
Conic Section

119751 The parametric equations of the circle \(\mathbf{x}^2+\mathbf{y}^2+\) \(\mathbf{m x}+\mathbf{m y}=0\) are

1 \(x=-\frac{m}{2}+\frac{m}{\sqrt{2}} \cos \theta, y=\frac{m}{2}+\frac{m}{\sqrt{2}} \sin \theta\)
2 \(\mathrm{x}=-\frac{\mathrm{m}}{2}+\frac{\mathrm{m}}{\sqrt{2}} \cos \theta, \mathrm{y}=-\frac{\mathrm{m}}{2}+\frac{\mathrm{m}}{\sqrt{2}} \sin \theta\)
3 \(x=0, y=0\)
4 None of the above
Conic Section

119748 The equation of that diameter of the circle \(x^2+\) \(y^2-6 x+2 y-8=0\) which passes through the origin, is

1 \(x+3 y=0\)
2 \(3 x-y=0\)
3 \(6 x-y=0\)
4 \(3 x+2 y=0\)
Conic Section

119749 For a circle \(x^2+y^2=81\). What is the equation of chord whose mid-point is \((-2,3)\) ?

1 \(2 x-3 y+13=0\)
2 \(3 x-2 y+13=0\)
3 \(2 \mathrm{x}-3 \mathrm{y}-13=0\)
4 \(2 x+3 y+13=0\)
Conic Section

119750 If the line \(x+2 k y+3=0\) is a diameter of the circle \(x^2+y^2-6 x+2 y=0\), then \(k\) is equal to

1 3
2 -5
3 -1
4 5
Conic Section

119751 The parametric equations of the circle \(\mathbf{x}^2+\mathbf{y}^2+\) \(\mathbf{m x}+\mathbf{m y}=0\) are

1 \(x=-\frac{m}{2}+\frac{m}{\sqrt{2}} \cos \theta, y=\frac{m}{2}+\frac{m}{\sqrt{2}} \sin \theta\)
2 \(\mathrm{x}=-\frac{\mathrm{m}}{2}+\frac{\mathrm{m}}{\sqrt{2}} \cos \theta, \mathrm{y}=-\frac{\mathrm{m}}{2}+\frac{\mathrm{m}}{\sqrt{2}} \sin \theta\)
3 \(x=0, y=0\)
4 None of the above