Explanation:
A \(\mathrm{x}^2+\mathrm{y}^2-6 \mathrm{x}+2 \mathrm{y}=0\)
\(2 \mathrm{~g}=-6, \quad 2 \mathrm{f}=2, \quad \mathrm{c}=0\)
\(\mathrm{g}=-3, \mathrm{f}=1\)
\((-\mathrm{g},-\mathrm{f})=(3,-1), \quad \mathrm{c}=0\)
\(\mathrm{r}=\sqrt{\mathrm{g}^2+\mathrm{f}^2-\mathrm{c}}\)
\(=\sqrt{(-3)^2+(1)^2-0}=\sqrt{9+1-0}=\sqrt{10}\)
Centre \(=(3,-1)\), radius \(=\sqrt{10}\).
Clearly, the center lies on the line
\(\mathrm{x}+2 \mathrm{ky}+3=0\)
\(3-2 \mathrm{k}+3=0\)
\(\mathrm{k}=3 .\)