119642
The equation of the circle with origin as centre passing the vertices of an equilateral triangle whose median is of length \(3 a\) is
1 \(x^2+y^2=9 a^2\)
2 \(x^2+y^2=16 a^2\)
3 \(x^2+y^2=a^2\)
4 None of the above
Explanation:
D : A median of a triangle is a line segment joining a vertex to the mid-point of the opposite side thus bisecting that side. Let, \(\mathrm{ABC}\) be an equilateral triangle in which median \(\mathrm{AD}=3 \mathrm{a}\) Centre of the circle is same as the centroid of the triangle i.e. \((0,0)\) \(\mathrm{AG}: \mathrm{GD}=2: 1\) \(\mathrm{AG} =\frac{2}{3} \mathrm{AD}\) \(=\frac{2}{3} \times 3 \mathrm{a}=2 \mathrm{a}\) \(\mathrm{AG}=2 \mathrm{a}\). \(\therefore\) The equation of the circle is \((x-0)^2+(y-0)^2=(2 a)^2\) \(x^2+y^2=4 a^2\)
UPSEE-2012
Conic Section
119643
The equation of a circle with centre at \((2,2)\) and passes through the point \((4,5)\) is
1 \(x^2+y^2-4 x-4 y-5=0\)
2 \(x^2+y^2+4 x+4 y-5=0\)
3 \(x^2+y^2=5\)
4 None of these
Explanation:
A : Given data, Centre of circle \(=(2,2)\) According to question circle passes through \((4,5)\) So the point is \((2,2) \&(4,5)\) As we know that \(\mathrm{r}=\sqrt{\left(\mathrm{x}_2-\mathrm{x}_1\right)^2+\left(\mathrm{y}_2-\mathrm{y}_1\right)^2}\) \(r=\sqrt{(4-2)^2+(5-2)^2}\) \(\mathrm{r}=\sqrt{4+9}\) \(\mathrm{r}=\sqrt{13}\) Now equation of the circle is given by \((\mathrm{x}-\mathrm{h})^2+(\mathrm{y}-\mathrm{k})^2=\mathrm{r}^2\) where \(\mathrm{h}\) and \(\mathrm{k}=2\), and 2 . \((x-2)^2+(y-2)^2=(\sqrt{13})^2\) \(x^2+4-4 x+y^2+4-4 y=13\) \(x^2+y^2-4 y-4 x-5=0\)
JCECE-2019]
Conic Section
119644
The equation of a circle passing through the point \((1,1)\) and the point of intersection of the circles \(x^2+y^2+13 x-3 y=0\) and \(2 x^2+2 y^2+4 x-7 y-25=0\) is
1 \(4 x^2+4 y^2+30 x-13 y-25=0\)
2 \(4 x^2+4 y^2+30 x-13 y+25=0\)
3 \(4 x^2-4 y^2-30 x+13 y-25=0\)
4 \(4 x^2-4 y^2+30 x-13 y-25=0\)
Explanation:
A Given, Circle \(-s_1 \equiv x^2+y^2+13 x-3 y=0\) Circle \(-\mathrm{s}_2 \equiv 2 \mathrm{x}^2+2 \mathrm{y}^2+4 \mathrm{x}-7 \mathrm{y}-25=0\) Concept use, \(\quad \mathrm{s}_1+\lambda \mathrm{s}_2=0\) \(\left(\mathrm{x}^2+\mathrm{y}^2+13 \mathrm{x}-3 \mathrm{y}\right)+\lambda\left(2 \mathrm{x}^2+2 \mathrm{y}^2+4 \mathrm{x}-7 \mathrm{y}-25\right)=0\) \(\cdots \text { (iii) }\) \(\because \text { The circle } \mathrm{s}_1+\lambda \mathrm{s}_2=0 \text { also passes through }(1,1)\) \(\text { So, }(1,1) \text { will satisfy the equation (iii) }\) \((1+1+13-3)+\lambda(2+2+4-7-25)=0\) \(12-24 \lambda=0\) \(\lambda=1 / 2\) Put value of \(\lambda\) is equation (iii), We get- \(\mathrm{s}_1+\lambda \mathrm{s}_2=4 \mathrm{x}^2+4 \mathrm{y}^2+30 \mathrm{x}-13 \mathrm{y}-25=0\)
JCECE-2017
Conic Section
119645
If the line \(y=\sqrt{3} x+k\) touches the circle \(x^2+y^2\) \(=16\), then the value of \(k\) is
1 \(\pm 8\)
2 \(\pm 6\)
3 \(\pm 4\)
4 \(\pm 10\)
Explanation:
A Given, circle \(x^2+y^2=16\) Here centre is \((0,0)\) and its radius is 4 . The given line is \(y=\sqrt{3} \mathrm{x}+\mathrm{k}\) According to equation, the line will touch the circle if the perpendicular distance from \(\mathrm{C}(0,0)\) to the line \(=\) radius of circle. \(\frac{|\sqrt{3} \times 0-0+\mathrm{k}|}{\sqrt{(\sqrt{3})^2+1^2}}=4\) \(\frac{|\mathrm{k}|}{2}=4\) \(\mathrm{k}= \pm 8\)
119642
The equation of the circle with origin as centre passing the vertices of an equilateral triangle whose median is of length \(3 a\) is
1 \(x^2+y^2=9 a^2\)
2 \(x^2+y^2=16 a^2\)
3 \(x^2+y^2=a^2\)
4 None of the above
Explanation:
D : A median of a triangle is a line segment joining a vertex to the mid-point of the opposite side thus bisecting that side. Let, \(\mathrm{ABC}\) be an equilateral triangle in which median \(\mathrm{AD}=3 \mathrm{a}\) Centre of the circle is same as the centroid of the triangle i.e. \((0,0)\) \(\mathrm{AG}: \mathrm{GD}=2: 1\) \(\mathrm{AG} =\frac{2}{3} \mathrm{AD}\) \(=\frac{2}{3} \times 3 \mathrm{a}=2 \mathrm{a}\) \(\mathrm{AG}=2 \mathrm{a}\). \(\therefore\) The equation of the circle is \((x-0)^2+(y-0)^2=(2 a)^2\) \(x^2+y^2=4 a^2\)
UPSEE-2012
Conic Section
119643
The equation of a circle with centre at \((2,2)\) and passes through the point \((4,5)\) is
1 \(x^2+y^2-4 x-4 y-5=0\)
2 \(x^2+y^2+4 x+4 y-5=0\)
3 \(x^2+y^2=5\)
4 None of these
Explanation:
A : Given data, Centre of circle \(=(2,2)\) According to question circle passes through \((4,5)\) So the point is \((2,2) \&(4,5)\) As we know that \(\mathrm{r}=\sqrt{\left(\mathrm{x}_2-\mathrm{x}_1\right)^2+\left(\mathrm{y}_2-\mathrm{y}_1\right)^2}\) \(r=\sqrt{(4-2)^2+(5-2)^2}\) \(\mathrm{r}=\sqrt{4+9}\) \(\mathrm{r}=\sqrt{13}\) Now equation of the circle is given by \((\mathrm{x}-\mathrm{h})^2+(\mathrm{y}-\mathrm{k})^2=\mathrm{r}^2\) where \(\mathrm{h}\) and \(\mathrm{k}=2\), and 2 . \((x-2)^2+(y-2)^2=(\sqrt{13})^2\) \(x^2+4-4 x+y^2+4-4 y=13\) \(x^2+y^2-4 y-4 x-5=0\)
JCECE-2019]
Conic Section
119644
The equation of a circle passing through the point \((1,1)\) and the point of intersection of the circles \(x^2+y^2+13 x-3 y=0\) and \(2 x^2+2 y^2+4 x-7 y-25=0\) is
1 \(4 x^2+4 y^2+30 x-13 y-25=0\)
2 \(4 x^2+4 y^2+30 x-13 y+25=0\)
3 \(4 x^2-4 y^2-30 x+13 y-25=0\)
4 \(4 x^2-4 y^2+30 x-13 y-25=0\)
Explanation:
A Given, Circle \(-s_1 \equiv x^2+y^2+13 x-3 y=0\) Circle \(-\mathrm{s}_2 \equiv 2 \mathrm{x}^2+2 \mathrm{y}^2+4 \mathrm{x}-7 \mathrm{y}-25=0\) Concept use, \(\quad \mathrm{s}_1+\lambda \mathrm{s}_2=0\) \(\left(\mathrm{x}^2+\mathrm{y}^2+13 \mathrm{x}-3 \mathrm{y}\right)+\lambda\left(2 \mathrm{x}^2+2 \mathrm{y}^2+4 \mathrm{x}-7 \mathrm{y}-25\right)=0\) \(\cdots \text { (iii) }\) \(\because \text { The circle } \mathrm{s}_1+\lambda \mathrm{s}_2=0 \text { also passes through }(1,1)\) \(\text { So, }(1,1) \text { will satisfy the equation (iii) }\) \((1+1+13-3)+\lambda(2+2+4-7-25)=0\) \(12-24 \lambda=0\) \(\lambda=1 / 2\) Put value of \(\lambda\) is equation (iii), We get- \(\mathrm{s}_1+\lambda \mathrm{s}_2=4 \mathrm{x}^2+4 \mathrm{y}^2+30 \mathrm{x}-13 \mathrm{y}-25=0\)
JCECE-2017
Conic Section
119645
If the line \(y=\sqrt{3} x+k\) touches the circle \(x^2+y^2\) \(=16\), then the value of \(k\) is
1 \(\pm 8\)
2 \(\pm 6\)
3 \(\pm 4\)
4 \(\pm 10\)
Explanation:
A Given, circle \(x^2+y^2=16\) Here centre is \((0,0)\) and its radius is 4 . The given line is \(y=\sqrt{3} \mathrm{x}+\mathrm{k}\) According to equation, the line will touch the circle if the perpendicular distance from \(\mathrm{C}(0,0)\) to the line \(=\) radius of circle. \(\frac{|\sqrt{3} \times 0-0+\mathrm{k}|}{\sqrt{(\sqrt{3})^2+1^2}}=4\) \(\frac{|\mathrm{k}|}{2}=4\) \(\mathrm{k}= \pm 8\)
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Conic Section
119642
The equation of the circle with origin as centre passing the vertices of an equilateral triangle whose median is of length \(3 a\) is
1 \(x^2+y^2=9 a^2\)
2 \(x^2+y^2=16 a^2\)
3 \(x^2+y^2=a^2\)
4 None of the above
Explanation:
D : A median of a triangle is a line segment joining a vertex to the mid-point of the opposite side thus bisecting that side. Let, \(\mathrm{ABC}\) be an equilateral triangle in which median \(\mathrm{AD}=3 \mathrm{a}\) Centre of the circle is same as the centroid of the triangle i.e. \((0,0)\) \(\mathrm{AG}: \mathrm{GD}=2: 1\) \(\mathrm{AG} =\frac{2}{3} \mathrm{AD}\) \(=\frac{2}{3} \times 3 \mathrm{a}=2 \mathrm{a}\) \(\mathrm{AG}=2 \mathrm{a}\). \(\therefore\) The equation of the circle is \((x-0)^2+(y-0)^2=(2 a)^2\) \(x^2+y^2=4 a^2\)
UPSEE-2012
Conic Section
119643
The equation of a circle with centre at \((2,2)\) and passes through the point \((4,5)\) is
1 \(x^2+y^2-4 x-4 y-5=0\)
2 \(x^2+y^2+4 x+4 y-5=0\)
3 \(x^2+y^2=5\)
4 None of these
Explanation:
A : Given data, Centre of circle \(=(2,2)\) According to question circle passes through \((4,5)\) So the point is \((2,2) \&(4,5)\) As we know that \(\mathrm{r}=\sqrt{\left(\mathrm{x}_2-\mathrm{x}_1\right)^2+\left(\mathrm{y}_2-\mathrm{y}_1\right)^2}\) \(r=\sqrt{(4-2)^2+(5-2)^2}\) \(\mathrm{r}=\sqrt{4+9}\) \(\mathrm{r}=\sqrt{13}\) Now equation of the circle is given by \((\mathrm{x}-\mathrm{h})^2+(\mathrm{y}-\mathrm{k})^2=\mathrm{r}^2\) where \(\mathrm{h}\) and \(\mathrm{k}=2\), and 2 . \((x-2)^2+(y-2)^2=(\sqrt{13})^2\) \(x^2+4-4 x+y^2+4-4 y=13\) \(x^2+y^2-4 y-4 x-5=0\)
JCECE-2019]
Conic Section
119644
The equation of a circle passing through the point \((1,1)\) and the point of intersection of the circles \(x^2+y^2+13 x-3 y=0\) and \(2 x^2+2 y^2+4 x-7 y-25=0\) is
1 \(4 x^2+4 y^2+30 x-13 y-25=0\)
2 \(4 x^2+4 y^2+30 x-13 y+25=0\)
3 \(4 x^2-4 y^2-30 x+13 y-25=0\)
4 \(4 x^2-4 y^2+30 x-13 y-25=0\)
Explanation:
A Given, Circle \(-s_1 \equiv x^2+y^2+13 x-3 y=0\) Circle \(-\mathrm{s}_2 \equiv 2 \mathrm{x}^2+2 \mathrm{y}^2+4 \mathrm{x}-7 \mathrm{y}-25=0\) Concept use, \(\quad \mathrm{s}_1+\lambda \mathrm{s}_2=0\) \(\left(\mathrm{x}^2+\mathrm{y}^2+13 \mathrm{x}-3 \mathrm{y}\right)+\lambda\left(2 \mathrm{x}^2+2 \mathrm{y}^2+4 \mathrm{x}-7 \mathrm{y}-25\right)=0\) \(\cdots \text { (iii) }\) \(\because \text { The circle } \mathrm{s}_1+\lambda \mathrm{s}_2=0 \text { also passes through }(1,1)\) \(\text { So, }(1,1) \text { will satisfy the equation (iii) }\) \((1+1+13-3)+\lambda(2+2+4-7-25)=0\) \(12-24 \lambda=0\) \(\lambda=1 / 2\) Put value of \(\lambda\) is equation (iii), We get- \(\mathrm{s}_1+\lambda \mathrm{s}_2=4 \mathrm{x}^2+4 \mathrm{y}^2+30 \mathrm{x}-13 \mathrm{y}-25=0\)
JCECE-2017
Conic Section
119645
If the line \(y=\sqrt{3} x+k\) touches the circle \(x^2+y^2\) \(=16\), then the value of \(k\) is
1 \(\pm 8\)
2 \(\pm 6\)
3 \(\pm 4\)
4 \(\pm 10\)
Explanation:
A Given, circle \(x^2+y^2=16\) Here centre is \((0,0)\) and its radius is 4 . The given line is \(y=\sqrt{3} \mathrm{x}+\mathrm{k}\) According to equation, the line will touch the circle if the perpendicular distance from \(\mathrm{C}(0,0)\) to the line \(=\) radius of circle. \(\frac{|\sqrt{3} \times 0-0+\mathrm{k}|}{\sqrt{(\sqrt{3})^2+1^2}}=4\) \(\frac{|\mathrm{k}|}{2}=4\) \(\mathrm{k}= \pm 8\)
119642
The equation of the circle with origin as centre passing the vertices of an equilateral triangle whose median is of length \(3 a\) is
1 \(x^2+y^2=9 a^2\)
2 \(x^2+y^2=16 a^2\)
3 \(x^2+y^2=a^2\)
4 None of the above
Explanation:
D : A median of a triangle is a line segment joining a vertex to the mid-point of the opposite side thus bisecting that side. Let, \(\mathrm{ABC}\) be an equilateral triangle in which median \(\mathrm{AD}=3 \mathrm{a}\) Centre of the circle is same as the centroid of the triangle i.e. \((0,0)\) \(\mathrm{AG}: \mathrm{GD}=2: 1\) \(\mathrm{AG} =\frac{2}{3} \mathrm{AD}\) \(=\frac{2}{3} \times 3 \mathrm{a}=2 \mathrm{a}\) \(\mathrm{AG}=2 \mathrm{a}\). \(\therefore\) The equation of the circle is \((x-0)^2+(y-0)^2=(2 a)^2\) \(x^2+y^2=4 a^2\)
UPSEE-2012
Conic Section
119643
The equation of a circle with centre at \((2,2)\) and passes through the point \((4,5)\) is
1 \(x^2+y^2-4 x-4 y-5=0\)
2 \(x^2+y^2+4 x+4 y-5=0\)
3 \(x^2+y^2=5\)
4 None of these
Explanation:
A : Given data, Centre of circle \(=(2,2)\) According to question circle passes through \((4,5)\) So the point is \((2,2) \&(4,5)\) As we know that \(\mathrm{r}=\sqrt{\left(\mathrm{x}_2-\mathrm{x}_1\right)^2+\left(\mathrm{y}_2-\mathrm{y}_1\right)^2}\) \(r=\sqrt{(4-2)^2+(5-2)^2}\) \(\mathrm{r}=\sqrt{4+9}\) \(\mathrm{r}=\sqrt{13}\) Now equation of the circle is given by \((\mathrm{x}-\mathrm{h})^2+(\mathrm{y}-\mathrm{k})^2=\mathrm{r}^2\) where \(\mathrm{h}\) and \(\mathrm{k}=2\), and 2 . \((x-2)^2+(y-2)^2=(\sqrt{13})^2\) \(x^2+4-4 x+y^2+4-4 y=13\) \(x^2+y^2-4 y-4 x-5=0\)
JCECE-2019]
Conic Section
119644
The equation of a circle passing through the point \((1,1)\) and the point of intersection of the circles \(x^2+y^2+13 x-3 y=0\) and \(2 x^2+2 y^2+4 x-7 y-25=0\) is
1 \(4 x^2+4 y^2+30 x-13 y-25=0\)
2 \(4 x^2+4 y^2+30 x-13 y+25=0\)
3 \(4 x^2-4 y^2-30 x+13 y-25=0\)
4 \(4 x^2-4 y^2+30 x-13 y-25=0\)
Explanation:
A Given, Circle \(-s_1 \equiv x^2+y^2+13 x-3 y=0\) Circle \(-\mathrm{s}_2 \equiv 2 \mathrm{x}^2+2 \mathrm{y}^2+4 \mathrm{x}-7 \mathrm{y}-25=0\) Concept use, \(\quad \mathrm{s}_1+\lambda \mathrm{s}_2=0\) \(\left(\mathrm{x}^2+\mathrm{y}^2+13 \mathrm{x}-3 \mathrm{y}\right)+\lambda\left(2 \mathrm{x}^2+2 \mathrm{y}^2+4 \mathrm{x}-7 \mathrm{y}-25\right)=0\) \(\cdots \text { (iii) }\) \(\because \text { The circle } \mathrm{s}_1+\lambda \mathrm{s}_2=0 \text { also passes through }(1,1)\) \(\text { So, }(1,1) \text { will satisfy the equation (iii) }\) \((1+1+13-3)+\lambda(2+2+4-7-25)=0\) \(12-24 \lambda=0\) \(\lambda=1 / 2\) Put value of \(\lambda\) is equation (iii), We get- \(\mathrm{s}_1+\lambda \mathrm{s}_2=4 \mathrm{x}^2+4 \mathrm{y}^2+30 \mathrm{x}-13 \mathrm{y}-25=0\)
JCECE-2017
Conic Section
119645
If the line \(y=\sqrt{3} x+k\) touches the circle \(x^2+y^2\) \(=16\), then the value of \(k\) is
1 \(\pm 8\)
2 \(\pm 6\)
3 \(\pm 4\)
4 \(\pm 10\)
Explanation:
A Given, circle \(x^2+y^2=16\) Here centre is \((0,0)\) and its radius is 4 . The given line is \(y=\sqrt{3} \mathrm{x}+\mathrm{k}\) According to equation, the line will touch the circle if the perpendicular distance from \(\mathrm{C}(0,0)\) to the line \(=\) radius of circle. \(\frac{|\sqrt{3} \times 0-0+\mathrm{k}|}{\sqrt{(\sqrt{3})^2+1^2}}=4\) \(\frac{|\mathrm{k}|}{2}=4\) \(\mathrm{k}= \pm 8\)