Standard and General Form of Equation of a Circle
Conic Section

119633 If the radius of circle \(x^2+y^2-4 x+6 y-k=0\) is
5 , then \(\mathrm{k}=\)

1 12
2 25
3 -12
4 -25
Conic Section

119634 The radius of the circle passing through the points \((5,7),(2,-2)\) and \((-2,0)\) is

1 2 units
2 5 units
3 3 units
4 4 units
Conic Section

119635 If the radius of the circle
\(x^2+y^2-18 x+12 y+k=0\) is 11 units, then the value of \(k\) is

1 -3
2 4
3 3
4 -4
Conic Section

119636 The equation of the circle concentric with the circle \(x^2+y^2-6 x-4 y-12=0\) and touching the \(\mathbf{Y}\)-axis is
#[Qdiff: Hard, QCat: Numerical Based, examname: Hence, \(\mathrm{By}\) comparing with standard equation\), \(2 \mathrm{~g}=-6,2 \mathrm{f}=-4, \mathrm{c}=-12\), \(\mathrm{~g}=-3, \mathrm{f}=-2, \(\therefore\) centre of the circle is \(\mathrm{C}(-\mathrm{g},-\mathrm{f})=(3,2)\). The required circle touches the \(\mathrm{y}-\) axis then radius of the, circle is 3., the equation of the circle is-, \((\mathrm{x}-3)^2+(\mathrm{y}-2)^2=3^2\), \(\mathrm{x}^2+9-6 \mathrm{x}+\mathrm{y}^2+4-4 \mathrm{y}=9\), \(\mathrm{x}^2+\mathrm{y}^2-6 \mathrm{x}-4 \mathrm{y}+4=0\), 14. The intercept on the line \(y=x\) by the circle \(x^2+y^2-2 x=0\) is \(A B\). The equation of the circle with \(\mathrm{AB}\) as a diameter is,

1 \(x^2+y^2-6 x-4 y-4=0\)
2 \(x^2+y^2-6 x-4 y-9=0\)
3 \(x^2+y^2-6 x-4 y+9=0\)
4 \(x^2+y^2-6 x-4 y+4=0\)
Conic Section

119637 Find the equation of a circle which touches both the axes and the line \(3 x-4 y+8=0\) and lies in the third quadrant.

1 \(x^2+y^2+4 x-4 y-4=0\)
2 \(x^2+y^2+4 x+4 y+4=0\)
3 \(x^2+y^2-4 x-4 y+4=0\)
4 \(x^2+y^2+4 x+4 y-4=0\)
Conic Section

119633 If the radius of circle \(x^2+y^2-4 x+6 y-k=0\) is
5 , then \(\mathrm{k}=\)

1 12
2 25
3 -12
4 -25
Conic Section

119634 The radius of the circle passing through the points \((5,7),(2,-2)\) and \((-2,0)\) is

1 2 units
2 5 units
3 3 units
4 4 units
Conic Section

119635 If the radius of the circle
\(x^2+y^2-18 x+12 y+k=0\) is 11 units, then the value of \(k\) is

1 -3
2 4
3 3
4 -4
Conic Section

119636 The equation of the circle concentric with the circle \(x^2+y^2-6 x-4 y-12=0\) and touching the \(\mathbf{Y}\)-axis is
#[Qdiff: Hard, QCat: Numerical Based, examname: Hence, \(\mathrm{By}\) comparing with standard equation\), \(2 \mathrm{~g}=-6,2 \mathrm{f}=-4, \mathrm{c}=-12\), \(\mathrm{~g}=-3, \mathrm{f}=-2, \(\therefore\) centre of the circle is \(\mathrm{C}(-\mathrm{g},-\mathrm{f})=(3,2)\). The required circle touches the \(\mathrm{y}-\) axis then radius of the, circle is 3., the equation of the circle is-, \((\mathrm{x}-3)^2+(\mathrm{y}-2)^2=3^2\), \(\mathrm{x}^2+9-6 \mathrm{x}+\mathrm{y}^2+4-4 \mathrm{y}=9\), \(\mathrm{x}^2+\mathrm{y}^2-6 \mathrm{x}-4 \mathrm{y}+4=0\), 14. The intercept on the line \(y=x\) by the circle \(x^2+y^2-2 x=0\) is \(A B\). The equation of the circle with \(\mathrm{AB}\) as a diameter is,

1 \(x^2+y^2-6 x-4 y-4=0\)
2 \(x^2+y^2-6 x-4 y-9=0\)
3 \(x^2+y^2-6 x-4 y+9=0\)
4 \(x^2+y^2-6 x-4 y+4=0\)
Conic Section

119637 Find the equation of a circle which touches both the axes and the line \(3 x-4 y+8=0\) and lies in the third quadrant.

1 \(x^2+y^2+4 x-4 y-4=0\)
2 \(x^2+y^2+4 x+4 y+4=0\)
3 \(x^2+y^2-4 x-4 y+4=0\)
4 \(x^2+y^2+4 x+4 y-4=0\)
Conic Section

119633 If the radius of circle \(x^2+y^2-4 x+6 y-k=0\) is
5 , then \(\mathrm{k}=\)

1 12
2 25
3 -12
4 -25
Conic Section

119634 The radius of the circle passing through the points \((5,7),(2,-2)\) and \((-2,0)\) is

1 2 units
2 5 units
3 3 units
4 4 units
Conic Section

119635 If the radius of the circle
\(x^2+y^2-18 x+12 y+k=0\) is 11 units, then the value of \(k\) is

1 -3
2 4
3 3
4 -4
Conic Section

119636 The equation of the circle concentric with the circle \(x^2+y^2-6 x-4 y-12=0\) and touching the \(\mathbf{Y}\)-axis is
#[Qdiff: Hard, QCat: Numerical Based, examname: Hence, \(\mathrm{By}\) comparing with standard equation\), \(2 \mathrm{~g}=-6,2 \mathrm{f}=-4, \mathrm{c}=-12\), \(\mathrm{~g}=-3, \mathrm{f}=-2, \(\therefore\) centre of the circle is \(\mathrm{C}(-\mathrm{g},-\mathrm{f})=(3,2)\). The required circle touches the \(\mathrm{y}-\) axis then radius of the, circle is 3., the equation of the circle is-, \((\mathrm{x}-3)^2+(\mathrm{y}-2)^2=3^2\), \(\mathrm{x}^2+9-6 \mathrm{x}+\mathrm{y}^2+4-4 \mathrm{y}=9\), \(\mathrm{x}^2+\mathrm{y}^2-6 \mathrm{x}-4 \mathrm{y}+4=0\), 14. The intercept on the line \(y=x\) by the circle \(x^2+y^2-2 x=0\) is \(A B\). The equation of the circle with \(\mathrm{AB}\) as a diameter is,

1 \(x^2+y^2-6 x-4 y-4=0\)
2 \(x^2+y^2-6 x-4 y-9=0\)
3 \(x^2+y^2-6 x-4 y+9=0\)
4 \(x^2+y^2-6 x-4 y+4=0\)
Conic Section

119637 Find the equation of a circle which touches both the axes and the line \(3 x-4 y+8=0\) and lies in the third quadrant.

1 \(x^2+y^2+4 x-4 y-4=0\)
2 \(x^2+y^2+4 x+4 y+4=0\)
3 \(x^2+y^2-4 x-4 y+4=0\)
4 \(x^2+y^2+4 x+4 y-4=0\)
Conic Section

119633 If the radius of circle \(x^2+y^2-4 x+6 y-k=0\) is
5 , then \(\mathrm{k}=\)

1 12
2 25
3 -12
4 -25
Conic Section

119634 The radius of the circle passing through the points \((5,7),(2,-2)\) and \((-2,0)\) is

1 2 units
2 5 units
3 3 units
4 4 units
Conic Section

119635 If the radius of the circle
\(x^2+y^2-18 x+12 y+k=0\) is 11 units, then the value of \(k\) is

1 -3
2 4
3 3
4 -4
Conic Section

119636 The equation of the circle concentric with the circle \(x^2+y^2-6 x-4 y-12=0\) and touching the \(\mathbf{Y}\)-axis is
#[Qdiff: Hard, QCat: Numerical Based, examname: Hence, \(\mathrm{By}\) comparing with standard equation\), \(2 \mathrm{~g}=-6,2 \mathrm{f}=-4, \mathrm{c}=-12\), \(\mathrm{~g}=-3, \mathrm{f}=-2, \(\therefore\) centre of the circle is \(\mathrm{C}(-\mathrm{g},-\mathrm{f})=(3,2)\). The required circle touches the \(\mathrm{y}-\) axis then radius of the, circle is 3., the equation of the circle is-, \((\mathrm{x}-3)^2+(\mathrm{y}-2)^2=3^2\), \(\mathrm{x}^2+9-6 \mathrm{x}+\mathrm{y}^2+4-4 \mathrm{y}=9\), \(\mathrm{x}^2+\mathrm{y}^2-6 \mathrm{x}-4 \mathrm{y}+4=0\), 14. The intercept on the line \(y=x\) by the circle \(x^2+y^2-2 x=0\) is \(A B\). The equation of the circle with \(\mathrm{AB}\) as a diameter is,

1 \(x^2+y^2-6 x-4 y-4=0\)
2 \(x^2+y^2-6 x-4 y-9=0\)
3 \(x^2+y^2-6 x-4 y+9=0\)
4 \(x^2+y^2-6 x-4 y+4=0\)
Conic Section

119637 Find the equation of a circle which touches both the axes and the line \(3 x-4 y+8=0\) and lies in the third quadrant.

1 \(x^2+y^2+4 x-4 y-4=0\)
2 \(x^2+y^2+4 x+4 y+4=0\)
3 \(x^2+y^2-4 x-4 y+4=0\)
4 \(x^2+y^2+4 x+4 y-4=0\)
Conic Section

119633 If the radius of circle \(x^2+y^2-4 x+6 y-k=0\) is
5 , then \(\mathrm{k}=\)

1 12
2 25
3 -12
4 -25
Conic Section

119634 The radius of the circle passing through the points \((5,7),(2,-2)\) and \((-2,0)\) is

1 2 units
2 5 units
3 3 units
4 4 units
Conic Section

119635 If the radius of the circle
\(x^2+y^2-18 x+12 y+k=0\) is 11 units, then the value of \(k\) is

1 -3
2 4
3 3
4 -4
Conic Section

119636 The equation of the circle concentric with the circle \(x^2+y^2-6 x-4 y-12=0\) and touching the \(\mathbf{Y}\)-axis is
#[Qdiff: Hard, QCat: Numerical Based, examname: Hence, \(\mathrm{By}\) comparing with standard equation\), \(2 \mathrm{~g}=-6,2 \mathrm{f}=-4, \mathrm{c}=-12\), \(\mathrm{~g}=-3, \mathrm{f}=-2, \(\therefore\) centre of the circle is \(\mathrm{C}(-\mathrm{g},-\mathrm{f})=(3,2)\). The required circle touches the \(\mathrm{y}-\) axis then radius of the, circle is 3., the equation of the circle is-, \((\mathrm{x}-3)^2+(\mathrm{y}-2)^2=3^2\), \(\mathrm{x}^2+9-6 \mathrm{x}+\mathrm{y}^2+4-4 \mathrm{y}=9\), \(\mathrm{x}^2+\mathrm{y}^2-6 \mathrm{x}-4 \mathrm{y}+4=0\), 14. The intercept on the line \(y=x\) by the circle \(x^2+y^2-2 x=0\) is \(A B\). The equation of the circle with \(\mathrm{AB}\) as a diameter is,

1 \(x^2+y^2-6 x-4 y-4=0\)
2 \(x^2+y^2-6 x-4 y-9=0\)
3 \(x^2+y^2-6 x-4 y+9=0\)
4 \(x^2+y^2-6 x-4 y+4=0\)
Conic Section

119637 Find the equation of a circle which touches both the axes and the line \(3 x-4 y+8=0\) and lies in the third quadrant.

1 \(x^2+y^2+4 x-4 y-4=0\)
2 \(x^2+y^2+4 x+4 y+4=0\)
3 \(x^2+y^2-4 x-4 y+4=0\)
4 \(x^2+y^2+4 x+4 y-4=0\)