Second Degree Homogeneous Equation
Straight Line

88864 The slopes of the lines represented by \(x^{2}+2 h x y\) \(+2 y^{2}=0\) are in the ratio \((1: 2)\) then \(h=\)

1 \(\pm \frac{1}{2}\)
2 \(\pm \frac{3}{2}\)
3 \(\pm 1\)
4 \(\pm 3\)
Straight Line

88865 The acute angle between lines \(6 x^{2}+11 x y-10 y^{2}=\) 0 is

1 \(\operatorname{Tan}^{-1}\left(\frac{\sqrt{361}}{2}\right)\)
2 \(\operatorname{Tan}^{-1}\left(\frac{\sqrt{361}}{4}\right)\)
3 \(\operatorname{Tan}^{-1}\left(\frac{361}{2}\right)\)
4 \(\operatorname{Tan}^{-1}\left(\frac{361}{4}\right)\)
Straight Line

88866 If \(p_{1} \cdot p_{2}\) denote the lengths of perpendiculars from \((2,3)\) onto the lines given by \(15 x^{2}+31 x y+\)
\(14 y^{2}=0 \text { and if } p_{1}>p_{2} \text {. then } p_{1}^{2} \frac{1}{-}-p_{2}{ }^{2}+\frac{1}{}\)

1 -1
2 0
3 12
4 1
Straight Line

88867 If the anlge between two lines represented by \(2 x^{2}+5 x y+3 y^{2}+7 y+4=0\) is \(\tan ^{-1} \mathrm{~m}\), then \(m\) is equal to

1 \(1 / 5\)
2 1
3 \(7 / 5\)
4 7
Straight Line

88864 The slopes of the lines represented by \(x^{2}+2 h x y\) \(+2 y^{2}=0\) are in the ratio \((1: 2)\) then \(h=\)

1 \(\pm \frac{1}{2}\)
2 \(\pm \frac{3}{2}\)
3 \(\pm 1\)
4 \(\pm 3\)
Straight Line

88865 The acute angle between lines \(6 x^{2}+11 x y-10 y^{2}=\) 0 is

1 \(\operatorname{Tan}^{-1}\left(\frac{\sqrt{361}}{2}\right)\)
2 \(\operatorname{Tan}^{-1}\left(\frac{\sqrt{361}}{4}\right)\)
3 \(\operatorname{Tan}^{-1}\left(\frac{361}{2}\right)\)
4 \(\operatorname{Tan}^{-1}\left(\frac{361}{4}\right)\)
Straight Line

88866 If \(p_{1} \cdot p_{2}\) denote the lengths of perpendiculars from \((2,3)\) onto the lines given by \(15 x^{2}+31 x y+\)
\(14 y^{2}=0 \text { and if } p_{1}>p_{2} \text {. then } p_{1}^{2} \frac{1}{-}-p_{2}{ }^{2}+\frac{1}{}\)

1 -1
2 0
3 12
4 1
Straight Line

88867 If the anlge between two lines represented by \(2 x^{2}+5 x y+3 y^{2}+7 y+4=0\) is \(\tan ^{-1} \mathrm{~m}\), then \(m\) is equal to

1 \(1 / 5\)
2 1
3 \(7 / 5\)
4 7
Straight Line

88864 The slopes of the lines represented by \(x^{2}+2 h x y\) \(+2 y^{2}=0\) are in the ratio \((1: 2)\) then \(h=\)

1 \(\pm \frac{1}{2}\)
2 \(\pm \frac{3}{2}\)
3 \(\pm 1\)
4 \(\pm 3\)
Straight Line

88865 The acute angle between lines \(6 x^{2}+11 x y-10 y^{2}=\) 0 is

1 \(\operatorname{Tan}^{-1}\left(\frac{\sqrt{361}}{2}\right)\)
2 \(\operatorname{Tan}^{-1}\left(\frac{\sqrt{361}}{4}\right)\)
3 \(\operatorname{Tan}^{-1}\left(\frac{361}{2}\right)\)
4 \(\operatorname{Tan}^{-1}\left(\frac{361}{4}\right)\)
Straight Line

88866 If \(p_{1} \cdot p_{2}\) denote the lengths of perpendiculars from \((2,3)\) onto the lines given by \(15 x^{2}+31 x y+\)
\(14 y^{2}=0 \text { and if } p_{1}>p_{2} \text {. then } p_{1}^{2} \frac{1}{-}-p_{2}{ }^{2}+\frac{1}{}\)

1 -1
2 0
3 12
4 1
Straight Line

88867 If the anlge between two lines represented by \(2 x^{2}+5 x y+3 y^{2}+7 y+4=0\) is \(\tan ^{-1} \mathrm{~m}\), then \(m\) is equal to

1 \(1 / 5\)
2 1
3 \(7 / 5\)
4 7
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Straight Line

88864 The slopes of the lines represented by \(x^{2}+2 h x y\) \(+2 y^{2}=0\) are in the ratio \((1: 2)\) then \(h=\)

1 \(\pm \frac{1}{2}\)
2 \(\pm \frac{3}{2}\)
3 \(\pm 1\)
4 \(\pm 3\)
Straight Line

88865 The acute angle between lines \(6 x^{2}+11 x y-10 y^{2}=\) 0 is

1 \(\operatorname{Tan}^{-1}\left(\frac{\sqrt{361}}{2}\right)\)
2 \(\operatorname{Tan}^{-1}\left(\frac{\sqrt{361}}{4}\right)\)
3 \(\operatorname{Tan}^{-1}\left(\frac{361}{2}\right)\)
4 \(\operatorname{Tan}^{-1}\left(\frac{361}{4}\right)\)
Straight Line

88866 If \(p_{1} \cdot p_{2}\) denote the lengths of perpendiculars from \((2,3)\) onto the lines given by \(15 x^{2}+31 x y+\)
\(14 y^{2}=0 \text { and if } p_{1}>p_{2} \text {. then } p_{1}^{2} \frac{1}{-}-p_{2}{ }^{2}+\frac{1}{}\)

1 -1
2 0
3 12
4 1
Straight Line

88867 If the anlge between two lines represented by \(2 x^{2}+5 x y+3 y^{2}+7 y+4=0\) is \(\tan ^{-1} \mathrm{~m}\), then \(m\) is equal to

1 \(1 / 5\)
2 1
3 \(7 / 5\)
4 7