1 \((1,0)\)
2 \((0,2)\)
3 \(\left(-\frac{1}{2}, \frac{3}{2}\right)\)
4 \(\left(\frac{1}{2}, \frac{1}{2}\right)\)
Explanation:
(C) :
We have \(x^{2}-y^{2}+x+3 y-2=0\), where
\(\mathrm{a}=1, \mathrm{~h}=0, \mathrm{~b}=-1, \mathrm{~g}=\frac{1}{2}, \mathrm{f}=\frac{3}{2}, \mathrm{c}=-2\)
Point of intersection is given by \(\left(\frac{\mathrm{hf}-\mathrm{bg}}{\mathrm{ab}-\mathrm{h}^{2}}, \frac{\mathrm{gh}-\mathrm{af}}{\mathrm{ab}-\mathrm{h}^{2}}\right)\)
\(\equiv\left(\frac{0+\frac{1}{2}}{-1}, \frac{0-\frac{3}{2}}{-1}\right) \equiv\left(-\frac{1}{2}, \frac{3}{2}\right)\)