Equation of Straight Line in Symmetric and Other Forms
Straight Line

88729 A line passes through \((2,2)\) and is perpendicular to the line \(3 x+y=3\). Its \(y-\) itercept is

1 \(2 / 3\)
2 1
3 \(1 / 3\)
4 \(4 / 3\)
Straight Line

88728 The equation of a line passing through \(\left(\operatorname{acos}^{3} \theta\right.\), \(\left.\operatorname{asin}^{3} \theta\right)\) and perpendicular to the line \(x \sec \theta+y\) \(\operatorname{cosec} \theta=\mathbf{a}\) is

1 \(x \cos \theta-y \sin \theta-a \cos 2 \theta=0\)
2 \(x \sin \theta-y \cos \theta-a \sin 2 \theta=0\)
3 \(x \cos \theta-y \sin \theta+a \cos 2 \theta=0\)
4 \(\mathrm{x} \sin \theta+\mathrm{y} \cos \theta-\mathrm{a} \sin 2 \theta=0\)
Straight Line

88730 If the point \(\left(\alpha, \frac{7 \sqrt{3}}{3}\right)\) lies on the curve traced by the mid-points of the line segments of the lines \(x \cos \theta+y \sin \theta=7, \theta \in\left(0, \frac{\pi}{2}\right)\) between the co-ordinates axes, then \(\alpha\) is equal to

1 7
2 -7
3 \(-7 \sqrt{3}\)
4 \(7 \sqrt{3}\)
Straight Line

88731 The locus of the mid-point of the portion of the line \(x\) sec \(\alpha+y \tan \alpha=p\) intercepted between the axes is

1 \(\frac{p^{2}}{4 x^{2}}=1+\frac{p^{2}}{4 y^{2}}\)
2 \(\frac{x^{2}}{p^{2}}+\frac{y^{2}}{p^{2}}=4\)
3 \(\frac{p^{2}}{x^{2}}=1+\frac{p^{2}}{y^{2}}\)
4 \(\frac{\mathrm{p}^{2}}{4 \mathrm{x}^{2}}+\frac{\mathrm{p}^{2}}{4 \mathrm{y}^{2}}=1\)
Straight Line

88732 Find the equation of a straight line passing through \((-5,6)\) and cutting off equal intercepts on the co-ordinate axes.

1 \(6 x-5 y=30\)
2 \(x-y=-11\)
3 \(x+y=11\)
4 \(x+y=1\)
\(\mathrm{x} / \mathrm{a}+\mathrm{y} / \mathrm{b}=1\)
\(\mathrm{a}=\mathrm{b}\)
\(\text { Point }(-4,5)\)
\(\frac{-5}{\mathrm{a}}+\frac{6}{\mathrm{~b}}=\)
Straight Line

88729 A line passes through \((2,2)\) and is perpendicular to the line \(3 x+y=3\). Its \(y-\) itercept is

1 \(2 / 3\)
2 1
3 \(1 / 3\)
4 \(4 / 3\)
Straight Line

88728 The equation of a line passing through \(\left(\operatorname{acos}^{3} \theta\right.\), \(\left.\operatorname{asin}^{3} \theta\right)\) and perpendicular to the line \(x \sec \theta+y\) \(\operatorname{cosec} \theta=\mathbf{a}\) is

1 \(x \cos \theta-y \sin \theta-a \cos 2 \theta=0\)
2 \(x \sin \theta-y \cos \theta-a \sin 2 \theta=0\)
3 \(x \cos \theta-y \sin \theta+a \cos 2 \theta=0\)
4 \(\mathrm{x} \sin \theta+\mathrm{y} \cos \theta-\mathrm{a} \sin 2 \theta=0\)
Straight Line

88730 If the point \(\left(\alpha, \frac{7 \sqrt{3}}{3}\right)\) lies on the curve traced by the mid-points of the line segments of the lines \(x \cos \theta+y \sin \theta=7, \theta \in\left(0, \frac{\pi}{2}\right)\) between the co-ordinates axes, then \(\alpha\) is equal to

1 7
2 -7
3 \(-7 \sqrt{3}\)
4 \(7 \sqrt{3}\)
Straight Line

88731 The locus of the mid-point of the portion of the line \(x\) sec \(\alpha+y \tan \alpha=p\) intercepted between the axes is

1 \(\frac{p^{2}}{4 x^{2}}=1+\frac{p^{2}}{4 y^{2}}\)
2 \(\frac{x^{2}}{p^{2}}+\frac{y^{2}}{p^{2}}=4\)
3 \(\frac{p^{2}}{x^{2}}=1+\frac{p^{2}}{y^{2}}\)
4 \(\frac{\mathrm{p}^{2}}{4 \mathrm{x}^{2}}+\frac{\mathrm{p}^{2}}{4 \mathrm{y}^{2}}=1\)
Straight Line

88732 Find the equation of a straight line passing through \((-5,6)\) and cutting off equal intercepts on the co-ordinate axes.

1 \(6 x-5 y=30\)
2 \(x-y=-11\)
3 \(x+y=11\)
4 \(x+y=1\)
\(\mathrm{x} / \mathrm{a}+\mathrm{y} / \mathrm{b}=1\)
\(\mathrm{a}=\mathrm{b}\)
\(\text { Point }(-4,5)\)
\(\frac{-5}{\mathrm{a}}+\frac{6}{\mathrm{~b}}=\)
Straight Line

88729 A line passes through \((2,2)\) and is perpendicular to the line \(3 x+y=3\). Its \(y-\) itercept is

1 \(2 / 3\)
2 1
3 \(1 / 3\)
4 \(4 / 3\)
Straight Line

88728 The equation of a line passing through \(\left(\operatorname{acos}^{3} \theta\right.\), \(\left.\operatorname{asin}^{3} \theta\right)\) and perpendicular to the line \(x \sec \theta+y\) \(\operatorname{cosec} \theta=\mathbf{a}\) is

1 \(x \cos \theta-y \sin \theta-a \cos 2 \theta=0\)
2 \(x \sin \theta-y \cos \theta-a \sin 2 \theta=0\)
3 \(x \cos \theta-y \sin \theta+a \cos 2 \theta=0\)
4 \(\mathrm{x} \sin \theta+\mathrm{y} \cos \theta-\mathrm{a} \sin 2 \theta=0\)
Straight Line

88730 If the point \(\left(\alpha, \frac{7 \sqrt{3}}{3}\right)\) lies on the curve traced by the mid-points of the line segments of the lines \(x \cos \theta+y \sin \theta=7, \theta \in\left(0, \frac{\pi}{2}\right)\) between the co-ordinates axes, then \(\alpha\) is equal to

1 7
2 -7
3 \(-7 \sqrt{3}\)
4 \(7 \sqrt{3}\)
Straight Line

88731 The locus of the mid-point of the portion of the line \(x\) sec \(\alpha+y \tan \alpha=p\) intercepted between the axes is

1 \(\frac{p^{2}}{4 x^{2}}=1+\frac{p^{2}}{4 y^{2}}\)
2 \(\frac{x^{2}}{p^{2}}+\frac{y^{2}}{p^{2}}=4\)
3 \(\frac{p^{2}}{x^{2}}=1+\frac{p^{2}}{y^{2}}\)
4 \(\frac{\mathrm{p}^{2}}{4 \mathrm{x}^{2}}+\frac{\mathrm{p}^{2}}{4 \mathrm{y}^{2}}=1\)
Straight Line

88732 Find the equation of a straight line passing through \((-5,6)\) and cutting off equal intercepts on the co-ordinate axes.

1 \(6 x-5 y=30\)
2 \(x-y=-11\)
3 \(x+y=11\)
4 \(x+y=1\)
\(\mathrm{x} / \mathrm{a}+\mathrm{y} / \mathrm{b}=1\)
\(\mathrm{a}=\mathrm{b}\)
\(\text { Point }(-4,5)\)
\(\frac{-5}{\mathrm{a}}+\frac{6}{\mathrm{~b}}=\)
Straight Line

88729 A line passes through \((2,2)\) and is perpendicular to the line \(3 x+y=3\). Its \(y-\) itercept is

1 \(2 / 3\)
2 1
3 \(1 / 3\)
4 \(4 / 3\)
Straight Line

88728 The equation of a line passing through \(\left(\operatorname{acos}^{3} \theta\right.\), \(\left.\operatorname{asin}^{3} \theta\right)\) and perpendicular to the line \(x \sec \theta+y\) \(\operatorname{cosec} \theta=\mathbf{a}\) is

1 \(x \cos \theta-y \sin \theta-a \cos 2 \theta=0\)
2 \(x \sin \theta-y \cos \theta-a \sin 2 \theta=0\)
3 \(x \cos \theta-y \sin \theta+a \cos 2 \theta=0\)
4 \(\mathrm{x} \sin \theta+\mathrm{y} \cos \theta-\mathrm{a} \sin 2 \theta=0\)
Straight Line

88730 If the point \(\left(\alpha, \frac{7 \sqrt{3}}{3}\right)\) lies on the curve traced by the mid-points of the line segments of the lines \(x \cos \theta+y \sin \theta=7, \theta \in\left(0, \frac{\pi}{2}\right)\) between the co-ordinates axes, then \(\alpha\) is equal to

1 7
2 -7
3 \(-7 \sqrt{3}\)
4 \(7 \sqrt{3}\)
Straight Line

88731 The locus of the mid-point of the portion of the line \(x\) sec \(\alpha+y \tan \alpha=p\) intercepted between the axes is

1 \(\frac{p^{2}}{4 x^{2}}=1+\frac{p^{2}}{4 y^{2}}\)
2 \(\frac{x^{2}}{p^{2}}+\frac{y^{2}}{p^{2}}=4\)
3 \(\frac{p^{2}}{x^{2}}=1+\frac{p^{2}}{y^{2}}\)
4 \(\frac{\mathrm{p}^{2}}{4 \mathrm{x}^{2}}+\frac{\mathrm{p}^{2}}{4 \mathrm{y}^{2}}=1\)
Straight Line

88732 Find the equation of a straight line passing through \((-5,6)\) and cutting off equal intercepts on the co-ordinate axes.

1 \(6 x-5 y=30\)
2 \(x-y=-11\)
3 \(x+y=11\)
4 \(x+y=1\)
\(\mathrm{x} / \mathrm{a}+\mathrm{y} / \mathrm{b}=1\)
\(\mathrm{a}=\mathrm{b}\)
\(\text { Point }(-4,5)\)
\(\frac{-5}{\mathrm{a}}+\frac{6}{\mathrm{~b}}=\)
Straight Line

88729 A line passes through \((2,2)\) and is perpendicular to the line \(3 x+y=3\). Its \(y-\) itercept is

1 \(2 / 3\)
2 1
3 \(1 / 3\)
4 \(4 / 3\)
Straight Line

88728 The equation of a line passing through \(\left(\operatorname{acos}^{3} \theta\right.\), \(\left.\operatorname{asin}^{3} \theta\right)\) and perpendicular to the line \(x \sec \theta+y\) \(\operatorname{cosec} \theta=\mathbf{a}\) is

1 \(x \cos \theta-y \sin \theta-a \cos 2 \theta=0\)
2 \(x \sin \theta-y \cos \theta-a \sin 2 \theta=0\)
3 \(x \cos \theta-y \sin \theta+a \cos 2 \theta=0\)
4 \(\mathrm{x} \sin \theta+\mathrm{y} \cos \theta-\mathrm{a} \sin 2 \theta=0\)
Straight Line

88730 If the point \(\left(\alpha, \frac{7 \sqrt{3}}{3}\right)\) lies on the curve traced by the mid-points of the line segments of the lines \(x \cos \theta+y \sin \theta=7, \theta \in\left(0, \frac{\pi}{2}\right)\) between the co-ordinates axes, then \(\alpha\) is equal to

1 7
2 -7
3 \(-7 \sqrt{3}\)
4 \(7 \sqrt{3}\)
Straight Line

88731 The locus of the mid-point of the portion of the line \(x\) sec \(\alpha+y \tan \alpha=p\) intercepted between the axes is

1 \(\frac{p^{2}}{4 x^{2}}=1+\frac{p^{2}}{4 y^{2}}\)
2 \(\frac{x^{2}}{p^{2}}+\frac{y^{2}}{p^{2}}=4\)
3 \(\frac{p^{2}}{x^{2}}=1+\frac{p^{2}}{y^{2}}\)
4 \(\frac{\mathrm{p}^{2}}{4 \mathrm{x}^{2}}+\frac{\mathrm{p}^{2}}{4 \mathrm{y}^{2}}=1\)
Straight Line

88732 Find the equation of a straight line passing through \((-5,6)\) and cutting off equal intercepts on the co-ordinate axes.

1 \(6 x-5 y=30\)
2 \(x-y=-11\)
3 \(x+y=11\)
4 \(x+y=1\)
\(\mathrm{x} / \mathrm{a}+\mathrm{y} / \mathrm{b}=1\)
\(\mathrm{a}=\mathrm{b}\)
\(\text { Point }(-4,5)\)
\(\frac{-5}{\mathrm{a}}+\frac{6}{\mathrm{~b}}=\)