Feasible and Infeasible Regions
Linear Inequalities and Linear Programming

88615 The maximum value of \(z=9 x+13 y\) subject to constraints \(2 x+3 y \leq 18, \quad 2 x+y \leq 10, \quad x \geq 0\), \(\mathbf{y} \geq \mathbf{0}\) is

1 130
2 81
3 79
4 99
Linear Inequalities and Linear Programming

88617 The shaded part of given figure indicates the feasible region.

Then the constraints are

1 \(x, y \geq 0, x+y \geq 0, x \geq 5, y \leq 3\)
2 \(x, y \geq 0, x-y \geq 0, x \leq 5, y \leq 3\)
3 \(x, y \geq 0, x-y \geq 0, x \leq 5, y \geq 3\)
4 \(x, y \geq 0, x-y \leq 0, x \leq 5, y \leq 3\)
Linear Inequalities and Linear Programming

88618 The constraints
\(-\mathbf{x}_{1}+\mathrm{x}_{2} \leq \mathbf{1}\)
\(-\mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 9\)
\(\mathbf{x}_{1}, \mathbf{x}_{2}, \geq 0\) defines on

1 Bounded feasible space
2 Unbounded feasible space
3 Both bounded and unbounded feasible space
4 None of these
Linear Inequalities and Linear Programming

88621 Consider
Minimize \(\mathrm{z}=3 \mathrm{x}+2 \mathrm{y}\)
subject to \(\quad x+y \geq 8\)
\(3 x+5 y \leq 15\)
\(\mathbf{x}, \mathbf{y} \geq \mathbf{0}\)
It has

1 infinite feasible solutions
2 unique feasible solutions
3 no feasible solution
4 none of these.
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Linear Inequalities and Linear Programming

88615 The maximum value of \(z=9 x+13 y\) subject to constraints \(2 x+3 y \leq 18, \quad 2 x+y \leq 10, \quad x \geq 0\), \(\mathbf{y} \geq \mathbf{0}\) is

1 130
2 81
3 79
4 99
Linear Inequalities and Linear Programming

88617 The shaded part of given figure indicates the feasible region.

Then the constraints are

1 \(x, y \geq 0, x+y \geq 0, x \geq 5, y \leq 3\)
2 \(x, y \geq 0, x-y \geq 0, x \leq 5, y \leq 3\)
3 \(x, y \geq 0, x-y \geq 0, x \leq 5, y \geq 3\)
4 \(x, y \geq 0, x-y \leq 0, x \leq 5, y \leq 3\)
Linear Inequalities and Linear Programming

88618 The constraints
\(-\mathbf{x}_{1}+\mathrm{x}_{2} \leq \mathbf{1}\)
\(-\mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 9\)
\(\mathbf{x}_{1}, \mathbf{x}_{2}, \geq 0\) defines on

1 Bounded feasible space
2 Unbounded feasible space
3 Both bounded and unbounded feasible space
4 None of these
Linear Inequalities and Linear Programming

88621 Consider
Minimize \(\mathrm{z}=3 \mathrm{x}+2 \mathrm{y}\)
subject to \(\quad x+y \geq 8\)
\(3 x+5 y \leq 15\)
\(\mathbf{x}, \mathbf{y} \geq \mathbf{0}\)
It has

1 infinite feasible solutions
2 unique feasible solutions
3 no feasible solution
4 none of these.
Linear Inequalities and Linear Programming

88615 The maximum value of \(z=9 x+13 y\) subject to constraints \(2 x+3 y \leq 18, \quad 2 x+y \leq 10, \quad x \geq 0\), \(\mathbf{y} \geq \mathbf{0}\) is

1 130
2 81
3 79
4 99
Linear Inequalities and Linear Programming

88617 The shaded part of given figure indicates the feasible region.

Then the constraints are

1 \(x, y \geq 0, x+y \geq 0, x \geq 5, y \leq 3\)
2 \(x, y \geq 0, x-y \geq 0, x \leq 5, y \leq 3\)
3 \(x, y \geq 0, x-y \geq 0, x \leq 5, y \geq 3\)
4 \(x, y \geq 0, x-y \leq 0, x \leq 5, y \leq 3\)
Linear Inequalities and Linear Programming

88618 The constraints
\(-\mathbf{x}_{1}+\mathrm{x}_{2} \leq \mathbf{1}\)
\(-\mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 9\)
\(\mathbf{x}_{1}, \mathbf{x}_{2}, \geq 0\) defines on

1 Bounded feasible space
2 Unbounded feasible space
3 Both bounded and unbounded feasible space
4 None of these
Linear Inequalities and Linear Programming

88621 Consider
Minimize \(\mathrm{z}=3 \mathrm{x}+2 \mathrm{y}\)
subject to \(\quad x+y \geq 8\)
\(3 x+5 y \leq 15\)
\(\mathbf{x}, \mathbf{y} \geq \mathbf{0}\)
It has

1 infinite feasible solutions
2 unique feasible solutions
3 no feasible solution
4 none of these.
Linear Inequalities and Linear Programming

88615 The maximum value of \(z=9 x+13 y\) subject to constraints \(2 x+3 y \leq 18, \quad 2 x+y \leq 10, \quad x \geq 0\), \(\mathbf{y} \geq \mathbf{0}\) is

1 130
2 81
3 79
4 99
Linear Inequalities and Linear Programming

88617 The shaded part of given figure indicates the feasible region.

Then the constraints are

1 \(x, y \geq 0, x+y \geq 0, x \geq 5, y \leq 3\)
2 \(x, y \geq 0, x-y \geq 0, x \leq 5, y \leq 3\)
3 \(x, y \geq 0, x-y \geq 0, x \leq 5, y \geq 3\)
4 \(x, y \geq 0, x-y \leq 0, x \leq 5, y \leq 3\)
Linear Inequalities and Linear Programming

88618 The constraints
\(-\mathbf{x}_{1}+\mathrm{x}_{2} \leq \mathbf{1}\)
\(-\mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 9\)
\(\mathbf{x}_{1}, \mathbf{x}_{2}, \geq 0\) defines on

1 Bounded feasible space
2 Unbounded feasible space
3 Both bounded and unbounded feasible space
4 None of these
Linear Inequalities and Linear Programming

88621 Consider
Minimize \(\mathrm{z}=3 \mathrm{x}+2 \mathrm{y}\)
subject to \(\quad x+y \geq 8\)
\(3 x+5 y \leq 15\)
\(\mathbf{x}, \mathbf{y} \geq \mathbf{0}\)
It has

1 infinite feasible solutions
2 unique feasible solutions
3 no feasible solution
4 none of these.