Mathematical Method of Linear Programming
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Linear Inequalities and Linear Programming

88605 If \(f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n !}(\log a)^{n}\), then at \(x=0, f(x)\)

1 has no limit
2 is discontinuous
3 is continuous but not differentiable
4 is differentiable
Linear Inequalities and Linear Programming

88606 For the following shaded region, the linear constraints are

1 \(x+2 y \geq 6,5 x+3 y \leq 15, x \leq 7, y \leq 6, x, y \geq 0\)
2 \(x+2 y \leq 6,5 x+3 y \leq 15, x \leq 7, y \leq 6, x, y \geq 0\)
3 \(x+2 y \leq 6,5 x+3 y \geq 15, x \leq 7, y \leq 6, x, y \geq 0\)
4 \(x+2 y \geq 6,5 x+3 y \geq 15, x \leq 7, y \leq 6, x, y \geq 0\)
Linear Inequalities and Linear Programming

88607 The graphical solution set of the system of in equations \(x+y \leq 70, x+2 y \leq 100.2 x+y \leq 120\), \(x \geq 0, y \geq 0\) is given by

1
2
3
4
Linear Inequalities and Linear Programming

88608 The shaded part of the given figure indicates of feasible region.

Then the constraints are

1 \(x, y \geq 0 ; x-y \geq 0 ; x \leq 5: y \leq 3\)
2 \(x, y \geq 0 ; x+y \geq 0 ; x \geq 5 ; y \leq 3\)
3 \(\mathrm{x}, \mathrm{y} \geq 0 ; \mathrm{x}-\mathrm{y} \leq 0 ; \mathrm{x} \leq 5 ; \mathrm{y} \leq 3\)
4 \(\mathrm{x}, \mathrm{y} \geq 0 ; \mathrm{x}-\mathrm{y} \geq 0 ; \mathrm{x} \leq 5 ; \mathrm{y} \geq 3\)
Linear Inequalities and Linear Programming

88605 If \(f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n !}(\log a)^{n}\), then at \(x=0, f(x)\)

1 has no limit
2 is discontinuous
3 is continuous but not differentiable
4 is differentiable
Linear Inequalities and Linear Programming

88606 For the following shaded region, the linear constraints are

1 \(x+2 y \geq 6,5 x+3 y \leq 15, x \leq 7, y \leq 6, x, y \geq 0\)
2 \(x+2 y \leq 6,5 x+3 y \leq 15, x \leq 7, y \leq 6, x, y \geq 0\)
3 \(x+2 y \leq 6,5 x+3 y \geq 15, x \leq 7, y \leq 6, x, y \geq 0\)
4 \(x+2 y \geq 6,5 x+3 y \geq 15, x \leq 7, y \leq 6, x, y \geq 0\)
Linear Inequalities and Linear Programming

88607 The graphical solution set of the system of in equations \(x+y \leq 70, x+2 y \leq 100.2 x+y \leq 120\), \(x \geq 0, y \geq 0\) is given by

1
2
3
4
Linear Inequalities and Linear Programming

88608 The shaded part of the given figure indicates of feasible region.

Then the constraints are

1 \(x, y \geq 0 ; x-y \geq 0 ; x \leq 5: y \leq 3\)
2 \(x, y \geq 0 ; x+y \geq 0 ; x \geq 5 ; y \leq 3\)
3 \(\mathrm{x}, \mathrm{y} \geq 0 ; \mathrm{x}-\mathrm{y} \leq 0 ; \mathrm{x} \leq 5 ; \mathrm{y} \leq 3\)
4 \(\mathrm{x}, \mathrm{y} \geq 0 ; \mathrm{x}-\mathrm{y} \geq 0 ; \mathrm{x} \leq 5 ; \mathrm{y} \geq 3\)
Linear Inequalities and Linear Programming

88605 If \(f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n !}(\log a)^{n}\), then at \(x=0, f(x)\)

1 has no limit
2 is discontinuous
3 is continuous but not differentiable
4 is differentiable
Linear Inequalities and Linear Programming

88606 For the following shaded region, the linear constraints are

1 \(x+2 y \geq 6,5 x+3 y \leq 15, x \leq 7, y \leq 6, x, y \geq 0\)
2 \(x+2 y \leq 6,5 x+3 y \leq 15, x \leq 7, y \leq 6, x, y \geq 0\)
3 \(x+2 y \leq 6,5 x+3 y \geq 15, x \leq 7, y \leq 6, x, y \geq 0\)
4 \(x+2 y \geq 6,5 x+3 y \geq 15, x \leq 7, y \leq 6, x, y \geq 0\)
Linear Inequalities and Linear Programming

88607 The graphical solution set of the system of in equations \(x+y \leq 70, x+2 y \leq 100.2 x+y \leq 120\), \(x \geq 0, y \geq 0\) is given by

1
2
3
4
Linear Inequalities and Linear Programming

88608 The shaded part of the given figure indicates of feasible region.

Then the constraints are

1 \(x, y \geq 0 ; x-y \geq 0 ; x \leq 5: y \leq 3\)
2 \(x, y \geq 0 ; x+y \geq 0 ; x \geq 5 ; y \leq 3\)
3 \(\mathrm{x}, \mathrm{y} \geq 0 ; \mathrm{x}-\mathrm{y} \leq 0 ; \mathrm{x} \leq 5 ; \mathrm{y} \leq 3\)
4 \(\mathrm{x}, \mathrm{y} \geq 0 ; \mathrm{x}-\mathrm{y} \geq 0 ; \mathrm{x} \leq 5 ; \mathrm{y} \geq 3\)
Linear Inequalities and Linear Programming

88605 If \(f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n !}(\log a)^{n}\), then at \(x=0, f(x)\)

1 has no limit
2 is discontinuous
3 is continuous but not differentiable
4 is differentiable
Linear Inequalities and Linear Programming

88606 For the following shaded region, the linear constraints are

1 \(x+2 y \geq 6,5 x+3 y \leq 15, x \leq 7, y \leq 6, x, y \geq 0\)
2 \(x+2 y \leq 6,5 x+3 y \leq 15, x \leq 7, y \leq 6, x, y \geq 0\)
3 \(x+2 y \leq 6,5 x+3 y \geq 15, x \leq 7, y \leq 6, x, y \geq 0\)
4 \(x+2 y \geq 6,5 x+3 y \geq 15, x \leq 7, y \leq 6, x, y \geq 0\)
Linear Inequalities and Linear Programming

88607 The graphical solution set of the system of in equations \(x+y \leq 70, x+2 y \leq 100.2 x+y \leq 120\), \(x \geq 0, y \geq 0\) is given by

1
2
3
4
Linear Inequalities and Linear Programming

88608 The shaded part of the given figure indicates of feasible region.

Then the constraints are

1 \(x, y \geq 0 ; x-y \geq 0 ; x \leq 5: y \leq 3\)
2 \(x, y \geq 0 ; x+y \geq 0 ; x \geq 5 ; y \leq 3\)
3 \(\mathrm{x}, \mathrm{y} \geq 0 ; \mathrm{x}-\mathrm{y} \leq 0 ; \mathrm{x} \leq 5 ; \mathrm{y} \leq 3\)
4 \(\mathrm{x}, \mathrm{y} \geq 0 ; \mathrm{x}-\mathrm{y} \geq 0 ; \mathrm{x} \leq 5 ; \mathrm{y} \geq 3\)