88573
Minimize \(\mathbf{Z}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{m}} \mathbf{c}_{\mathrm{ij}} \mathbf{x}_{\mathrm{ij}}\)
Subject to \(\sum_{i=1}^{m} x_{i j}=b_{j}, j=1,2, \ldots ., n\)
\(\sum_{j=1}^{n} x_{i j}=b_{j}, i=1,2, \ldots ., m\) is a LPP with number of constraints
88573
Minimize \(\mathbf{Z}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{m}} \mathbf{c}_{\mathrm{ij}} \mathbf{x}_{\mathrm{ij}}\)
Subject to \(\sum_{i=1}^{m} x_{i j}=b_{j}, j=1,2, \ldots ., n\)
\(\sum_{j=1}^{n} x_{i j}=b_{j}, i=1,2, \ldots ., m\) is a LPP with number of constraints
88573
Minimize \(\mathbf{Z}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{m}} \mathbf{c}_{\mathrm{ij}} \mathbf{x}_{\mathrm{ij}}\)
Subject to \(\sum_{i=1}^{m} x_{i j}=b_{j}, j=1,2, \ldots ., n\)
\(\sum_{j=1}^{n} x_{i j}=b_{j}, i=1,2, \ldots ., m\) is a LPP with number of constraints
88573
Minimize \(\mathbf{Z}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{m}} \mathbf{c}_{\mathrm{ij}} \mathbf{x}_{\mathrm{ij}}\)
Subject to \(\sum_{i=1}^{m} x_{i j}=b_{j}, j=1,2, \ldots ., n\)
\(\sum_{j=1}^{n} x_{i j}=b_{j}, i=1,2, \ldots ., m\) is a LPP with number of constraints
88573
Minimize \(\mathbf{Z}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{m}} \mathbf{c}_{\mathrm{ij}} \mathbf{x}_{\mathrm{ij}}\)
Subject to \(\sum_{i=1}^{m} x_{i j}=b_{j}, j=1,2, \ldots ., n\)
\(\sum_{j=1}^{n} x_{i j}=b_{j}, i=1,2, \ldots ., m\) is a LPP with number of constraints