Graphical Solution of Linear Inequalities of Two Variables
Linear Inequalities and Linear Programming

88534 The shaded region shown in fig. is given by the in equation

1 \(14 x+5 y \geq 70, y \leq 14\) and \(x-y \geq 5\)
2 \(14 x+5 y \geq 70, y \geq 14\) and \(x-y \geq 5\)
3 \(14 x+5 y \geq 70, y \leq 14\) and \(x-y \leq 5\)
4 \(14 x+5 y \leq 70, y \leq 14\) and \(x-y \geq 5\)
Linear Inequalities and Linear Programming

88535 Consider \(\frac{x}{2}+\frac{y}{4} \geq 1\) and \(\frac{x}{3}+\frac{y}{2} \leq 1, x, y \geq 0\).
Then number of possible solutions are :

1 Zero
2 Unique
3 Infinite
4 None of these
Linear Inequalities and Linear Programming

88536 The minimum value of \(Z=5 x+8 y\) subject \(x+y \geq \mathbf{5 , 0} \leq \mathrm{x} \leq \mathbf{4 ,} \mathrm{y} \leq \mathbf{2 ,} \mathrm{x} \geq 0\)

1 20
2 40
3 28
4 36
Linear Inequalities and Linear Programming

88537 The maximum value of \(Z=3 x+5 y\), subject to
\(3 x+2 y \leq 18, x \leq 4, y \leq 6, x, y \geq 0 \text { is }\)

1 32
2 30
3 27
4 36
Linear Inequalities and Linear Programming

88538 The maximum value of \(Z=10 x+25 y\) subject to \(\mathbf{0} \leq \mathrm{x} \leq \mathbf{3}, \mathbf{0} \leq \mathrm{y} \leq \mathbf{3}, \mathrm{x}+\mathrm{y} \leq \mathbf{5 ,} \mathrm{x} \geq \mathbf{0}, \mathrm{y} \geq \mathbf{0}\) is

1 120
2 110
3 95
4 100
Linear Inequalities and Linear Programming

88534 The shaded region shown in fig. is given by the in equation

1 \(14 x+5 y \geq 70, y \leq 14\) and \(x-y \geq 5\)
2 \(14 x+5 y \geq 70, y \geq 14\) and \(x-y \geq 5\)
3 \(14 x+5 y \geq 70, y \leq 14\) and \(x-y \leq 5\)
4 \(14 x+5 y \leq 70, y \leq 14\) and \(x-y \geq 5\)
Linear Inequalities and Linear Programming

88535 Consider \(\frac{x}{2}+\frac{y}{4} \geq 1\) and \(\frac{x}{3}+\frac{y}{2} \leq 1, x, y \geq 0\).
Then number of possible solutions are :

1 Zero
2 Unique
3 Infinite
4 None of these
Linear Inequalities and Linear Programming

88536 The minimum value of \(Z=5 x+8 y\) subject \(x+y \geq \mathbf{5 , 0} \leq \mathrm{x} \leq \mathbf{4 ,} \mathrm{y} \leq \mathbf{2 ,} \mathrm{x} \geq 0\)

1 20
2 40
3 28
4 36
Linear Inequalities and Linear Programming

88537 The maximum value of \(Z=3 x+5 y\), subject to
\(3 x+2 y \leq 18, x \leq 4, y \leq 6, x, y \geq 0 \text { is }\)

1 32
2 30
3 27
4 36
Linear Inequalities and Linear Programming

88538 The maximum value of \(Z=10 x+25 y\) subject to \(\mathbf{0} \leq \mathrm{x} \leq \mathbf{3}, \mathbf{0} \leq \mathrm{y} \leq \mathbf{3}, \mathrm{x}+\mathrm{y} \leq \mathbf{5 ,} \mathrm{x} \geq \mathbf{0}, \mathrm{y} \geq \mathbf{0}\) is

1 120
2 110
3 95
4 100
Linear Inequalities and Linear Programming

88534 The shaded region shown in fig. is given by the in equation

1 \(14 x+5 y \geq 70, y \leq 14\) and \(x-y \geq 5\)
2 \(14 x+5 y \geq 70, y \geq 14\) and \(x-y \geq 5\)
3 \(14 x+5 y \geq 70, y \leq 14\) and \(x-y \leq 5\)
4 \(14 x+5 y \leq 70, y \leq 14\) and \(x-y \geq 5\)
Linear Inequalities and Linear Programming

88535 Consider \(\frac{x}{2}+\frac{y}{4} \geq 1\) and \(\frac{x}{3}+\frac{y}{2} \leq 1, x, y \geq 0\).
Then number of possible solutions are :

1 Zero
2 Unique
3 Infinite
4 None of these
Linear Inequalities and Linear Programming

88536 The minimum value of \(Z=5 x+8 y\) subject \(x+y \geq \mathbf{5 , 0} \leq \mathrm{x} \leq \mathbf{4 ,} \mathrm{y} \leq \mathbf{2 ,} \mathrm{x} \geq 0\)

1 20
2 40
3 28
4 36
Linear Inequalities and Linear Programming

88537 The maximum value of \(Z=3 x+5 y\), subject to
\(3 x+2 y \leq 18, x \leq 4, y \leq 6, x, y \geq 0 \text { is }\)

1 32
2 30
3 27
4 36
Linear Inequalities and Linear Programming

88538 The maximum value of \(Z=10 x+25 y\) subject to \(\mathbf{0} \leq \mathrm{x} \leq \mathbf{3}, \mathbf{0} \leq \mathrm{y} \leq \mathbf{3}, \mathrm{x}+\mathrm{y} \leq \mathbf{5 ,} \mathrm{x} \geq \mathbf{0}, \mathrm{y} \geq \mathbf{0}\) is

1 120
2 110
3 95
4 100
Linear Inequalities and Linear Programming

88534 The shaded region shown in fig. is given by the in equation

1 \(14 x+5 y \geq 70, y \leq 14\) and \(x-y \geq 5\)
2 \(14 x+5 y \geq 70, y \geq 14\) and \(x-y \geq 5\)
3 \(14 x+5 y \geq 70, y \leq 14\) and \(x-y \leq 5\)
4 \(14 x+5 y \leq 70, y \leq 14\) and \(x-y \geq 5\)
Linear Inequalities and Linear Programming

88535 Consider \(\frac{x}{2}+\frac{y}{4} \geq 1\) and \(\frac{x}{3}+\frac{y}{2} \leq 1, x, y \geq 0\).
Then number of possible solutions are :

1 Zero
2 Unique
3 Infinite
4 None of these
Linear Inequalities and Linear Programming

88536 The minimum value of \(Z=5 x+8 y\) subject \(x+y \geq \mathbf{5 , 0} \leq \mathrm{x} \leq \mathbf{4 ,} \mathrm{y} \leq \mathbf{2 ,} \mathrm{x} \geq 0\)

1 20
2 40
3 28
4 36
Linear Inequalities and Linear Programming

88537 The maximum value of \(Z=3 x+5 y\), subject to
\(3 x+2 y \leq 18, x \leq 4, y \leq 6, x, y \geq 0 \text { is }\)

1 32
2 30
3 27
4 36
Linear Inequalities and Linear Programming

88538 The maximum value of \(Z=10 x+25 y\) subject to \(\mathbf{0} \leq \mathrm{x} \leq \mathbf{3}, \mathbf{0} \leq \mathrm{y} \leq \mathbf{3}, \mathrm{x}+\mathrm{y} \leq \mathbf{5 ,} \mathrm{x} \geq \mathbf{0}, \mathrm{y} \geq \mathbf{0}\) is

1 120
2 110
3 95
4 100
Linear Inequalities and Linear Programming

88534 The shaded region shown in fig. is given by the in equation

1 \(14 x+5 y \geq 70, y \leq 14\) and \(x-y \geq 5\)
2 \(14 x+5 y \geq 70, y \geq 14\) and \(x-y \geq 5\)
3 \(14 x+5 y \geq 70, y \leq 14\) and \(x-y \leq 5\)
4 \(14 x+5 y \leq 70, y \leq 14\) and \(x-y \geq 5\)
Linear Inequalities and Linear Programming

88535 Consider \(\frac{x}{2}+\frac{y}{4} \geq 1\) and \(\frac{x}{3}+\frac{y}{2} \leq 1, x, y \geq 0\).
Then number of possible solutions are :

1 Zero
2 Unique
3 Infinite
4 None of these
Linear Inequalities and Linear Programming

88536 The minimum value of \(Z=5 x+8 y\) subject \(x+y \geq \mathbf{5 , 0} \leq \mathrm{x} \leq \mathbf{4 ,} \mathrm{y} \leq \mathbf{2 ,} \mathrm{x} \geq 0\)

1 20
2 40
3 28
4 36
Linear Inequalities and Linear Programming

88537 The maximum value of \(Z=3 x+5 y\), subject to
\(3 x+2 y \leq 18, x \leq 4, y \leq 6, x, y \geq 0 \text { is }\)

1 32
2 30
3 27
4 36
Linear Inequalities and Linear Programming

88538 The maximum value of \(Z=10 x+25 y\) subject to \(\mathbf{0} \leq \mathrm{x} \leq \mathbf{3}, \mathbf{0} \leq \mathrm{y} \leq \mathbf{3}, \mathrm{x}+\mathrm{y} \leq \mathbf{5 ,} \mathrm{x} \geq \mathbf{0}, \mathrm{y} \geq \mathbf{0}\) is

1 120
2 110
3 95
4 100