Algebraic Solution of Linear Inequalities in One Variable
Linear Inequalities and Linear Programming

88506 If \(x \in R\) and \(0 \leq(3 x-5) / 2 \leq 8\), then the minimum and maximum values of ' \(x\) ' are

1 \(5 / 3\) and 7 respectively
2 0 and \(16 / 3\) respectively
3 3 and 9 respectively
4 5 and 21 respectively
Linear Inequalities and Linear Programming

88507 Solve the inequality \(2 x-5 \leq \frac{(4 x-7)}{3}\).

1 \(x \in(-\infty, 4)\)
2 \(x \in(-\infty, 4)\)
3 \(x \in(-\infty, 8)\)
4 \(x \in(-\infty,-4)\)
Linear Inequalities and Linear Programming

88508 Solve the inequality \(3 x+2>-16,2 x-3 \leq 11\)

1 \((-6,7)\)
2 \([-6,7)\)
3 \((-6,7]\)
4 \([-6,7]\)
Linear Inequalities and Linear Programming

88509 The number of integral solution of
\(\frac{x+1}{x^{2}+2}>\frac{1}{4} \text { is }\)

1 1
2 2
3 5
4 None of these
Linear Inequalities and Linear Programming

88521 If \(7 x-2\lt 4-3 x\) and \(3 x-1\lt 2+5 x\), then \(x\) lies in the interval

1 \(\left(\frac{3}{5}, \frac{3}{2}\right)\)
2 \(\left(\frac{-3}{2}, \frac{3}{5}\right)\)
3 \(\left[-\frac{3}{2}, \frac{3}{5}\right)\)
4 \(\left[-\frac{3}{2}, \frac{3}{5}\right]\)
5 \(\left(-\frac{3}{5}, \frac{3}{2}\right)\)
Linear Inequalities and Linear Programming

88506 If \(x \in R\) and \(0 \leq(3 x-5) / 2 \leq 8\), then the minimum and maximum values of ' \(x\) ' are

1 \(5 / 3\) and 7 respectively
2 0 and \(16 / 3\) respectively
3 3 and 9 respectively
4 5 and 21 respectively
Linear Inequalities and Linear Programming

88507 Solve the inequality \(2 x-5 \leq \frac{(4 x-7)}{3}\).

1 \(x \in(-\infty, 4)\)
2 \(x \in(-\infty, 4)\)
3 \(x \in(-\infty, 8)\)
4 \(x \in(-\infty,-4)\)
Linear Inequalities and Linear Programming

88508 Solve the inequality \(3 x+2>-16,2 x-3 \leq 11\)

1 \((-6,7)\)
2 \([-6,7)\)
3 \((-6,7]\)
4 \([-6,7]\)
Linear Inequalities and Linear Programming

88509 The number of integral solution of
\(\frac{x+1}{x^{2}+2}>\frac{1}{4} \text { is }\)

1 1
2 2
3 5
4 None of these
Linear Inequalities and Linear Programming

88521 If \(7 x-2\lt 4-3 x\) and \(3 x-1\lt 2+5 x\), then \(x\) lies in the interval

1 \(\left(\frac{3}{5}, \frac{3}{2}\right)\)
2 \(\left(\frac{-3}{2}, \frac{3}{5}\right)\)
3 \(\left[-\frac{3}{2}, \frac{3}{5}\right)\)
4 \(\left[-\frac{3}{2}, \frac{3}{5}\right]\)
5 \(\left(-\frac{3}{5}, \frac{3}{2}\right)\)
Linear Inequalities and Linear Programming

88506 If \(x \in R\) and \(0 \leq(3 x-5) / 2 \leq 8\), then the minimum and maximum values of ' \(x\) ' are

1 \(5 / 3\) and 7 respectively
2 0 and \(16 / 3\) respectively
3 3 and 9 respectively
4 5 and 21 respectively
Linear Inequalities and Linear Programming

88507 Solve the inequality \(2 x-5 \leq \frac{(4 x-7)}{3}\).

1 \(x \in(-\infty, 4)\)
2 \(x \in(-\infty, 4)\)
3 \(x \in(-\infty, 8)\)
4 \(x \in(-\infty,-4)\)
Linear Inequalities and Linear Programming

88508 Solve the inequality \(3 x+2>-16,2 x-3 \leq 11\)

1 \((-6,7)\)
2 \([-6,7)\)
3 \((-6,7]\)
4 \([-6,7]\)
Linear Inequalities and Linear Programming

88509 The number of integral solution of
\(\frac{x+1}{x^{2}+2}>\frac{1}{4} \text { is }\)

1 1
2 2
3 5
4 None of these
Linear Inequalities and Linear Programming

88521 If \(7 x-2\lt 4-3 x\) and \(3 x-1\lt 2+5 x\), then \(x\) lies in the interval

1 \(\left(\frac{3}{5}, \frac{3}{2}\right)\)
2 \(\left(\frac{-3}{2}, \frac{3}{5}\right)\)
3 \(\left[-\frac{3}{2}, \frac{3}{5}\right)\)
4 \(\left[-\frac{3}{2}, \frac{3}{5}\right]\)
5 \(\left(-\frac{3}{5}, \frac{3}{2}\right)\)
Linear Inequalities and Linear Programming

88506 If \(x \in R\) and \(0 \leq(3 x-5) / 2 \leq 8\), then the minimum and maximum values of ' \(x\) ' are

1 \(5 / 3\) and 7 respectively
2 0 and \(16 / 3\) respectively
3 3 and 9 respectively
4 5 and 21 respectively
Linear Inequalities and Linear Programming

88507 Solve the inequality \(2 x-5 \leq \frac{(4 x-7)}{3}\).

1 \(x \in(-\infty, 4)\)
2 \(x \in(-\infty, 4)\)
3 \(x \in(-\infty, 8)\)
4 \(x \in(-\infty,-4)\)
Linear Inequalities and Linear Programming

88508 Solve the inequality \(3 x+2>-16,2 x-3 \leq 11\)

1 \((-6,7)\)
2 \([-6,7)\)
3 \((-6,7]\)
4 \([-6,7]\)
Linear Inequalities and Linear Programming

88509 The number of integral solution of
\(\frac{x+1}{x^{2}+2}>\frac{1}{4} \text { is }\)

1 1
2 2
3 5
4 None of these
Linear Inequalities and Linear Programming

88521 If \(7 x-2\lt 4-3 x\) and \(3 x-1\lt 2+5 x\), then \(x\) lies in the interval

1 \(\left(\frac{3}{5}, \frac{3}{2}\right)\)
2 \(\left(\frac{-3}{2}, \frac{3}{5}\right)\)
3 \(\left[-\frac{3}{2}, \frac{3}{5}\right)\)
4 \(\left[-\frac{3}{2}, \frac{3}{5}\right]\)
5 \(\left(-\frac{3}{5}, \frac{3}{2}\right)\)
Linear Inequalities and Linear Programming

88506 If \(x \in R\) and \(0 \leq(3 x-5) / 2 \leq 8\), then the minimum and maximum values of ' \(x\) ' are

1 \(5 / 3\) and 7 respectively
2 0 and \(16 / 3\) respectively
3 3 and 9 respectively
4 5 and 21 respectively
Linear Inequalities and Linear Programming

88507 Solve the inequality \(2 x-5 \leq \frac{(4 x-7)}{3}\).

1 \(x \in(-\infty, 4)\)
2 \(x \in(-\infty, 4)\)
3 \(x \in(-\infty, 8)\)
4 \(x \in(-\infty,-4)\)
Linear Inequalities and Linear Programming

88508 Solve the inequality \(3 x+2>-16,2 x-3 \leq 11\)

1 \((-6,7)\)
2 \([-6,7)\)
3 \((-6,7]\)
4 \([-6,7]\)
Linear Inequalities and Linear Programming

88509 The number of integral solution of
\(\frac{x+1}{x^{2}+2}>\frac{1}{4} \text { is }\)

1 1
2 2
3 5
4 None of these
Linear Inequalities and Linear Programming

88521 If \(7 x-2\lt 4-3 x\) and \(3 x-1\lt 2+5 x\), then \(x\) lies in the interval

1 \(\left(\frac{3}{5}, \frac{3}{2}\right)\)
2 \(\left(\frac{-3}{2}, \frac{3}{5}\right)\)
3 \(\left[-\frac{3}{2}, \frac{3}{5}\right)\)
4 \(\left[-\frac{3}{2}, \frac{3}{5}\right]\)
5 \(\left(-\frac{3}{5}, \frac{3}{2}\right)\)