Polar Co-ordinate and its Equation
Co-Ordinate system

88410 \((-\sqrt{2}, \sqrt{2})\) are Cartesian co-ordinates of the point, then its polar co-ordinates are

1 \(\left(4, \frac{5 \pi}{4}\right)\)
2 \(\left(3, \frac{7 \pi}{4}\right)\)
3 \(\left(1, \frac{4 \pi}{3}\right)\)
4 \(\left(2, \frac{3 \pi}{4}\right)\)
Co-Ordinate system

88411 The polar coordinates of \(P\) are \(\left(2, \frac{\pi}{6}\right)\). If \(Q\) is the image of \(P\) about the \(X\)-axis, then the polar coordinates of \(Q\) are

1 \(\left(2, \frac{\pi}{6}\right)\)
2 \(\left(2, \frac{11 \pi}{6}\right)\)
3 \(\left(2, \frac{5 \pi}{6}\right)\)
4 \(\left(2, \frac{\pi}{3}\right)\)
Co-Ordinate system

88412 If the point \(A(5, k), B(-3,1)\) and \(C(-7,-2)\) are collinear, then \(k=\)

1 \(\frac{1}{7}\)
2 7
3 -7
4 \(\frac{-1}{7}\)
Co-Ordinate system

88413 The Cartesian co-ordinates of the point whose polar co-ordinates are \(\left(\frac{1}{\mathbf{2}}, 120^{\circ}\right)\) are

1 \(\left(\frac{-1}{4}, \frac{-\sqrt{3}}{4}\right)\)
2 \(\left(\frac{1}{4}, \frac{\sqrt{3}}{4}\right)\)
3 \(\left(\frac{-1}{4}, \frac{\sqrt{3}}{4}\right)\)
4 \(\left(\frac{1}{4}, \frac{-\sqrt{3}}{4}\right)\)
Co-Ordinate system

88414 A normal to the curve \(2 x^{2}-y^{2}=14\) at the point \(\left(x_{1}, y_{1}\right)\) is parallel to the straight line \(x+3 y=4\). Then the point \(\left(\mathrm{x}_{1}, \mathrm{y}_{\mathbf{1}}\right)\) is

1 \((3,3)\)
2 \((-4,-2)\)
3 \((2,3)\)
4 \((3,2)\)
Co-Ordinate system

88410 \((-\sqrt{2}, \sqrt{2})\) are Cartesian co-ordinates of the point, then its polar co-ordinates are

1 \(\left(4, \frac{5 \pi}{4}\right)\)
2 \(\left(3, \frac{7 \pi}{4}\right)\)
3 \(\left(1, \frac{4 \pi}{3}\right)\)
4 \(\left(2, \frac{3 \pi}{4}\right)\)
Co-Ordinate system

88411 The polar coordinates of \(P\) are \(\left(2, \frac{\pi}{6}\right)\). If \(Q\) is the image of \(P\) about the \(X\)-axis, then the polar coordinates of \(Q\) are

1 \(\left(2, \frac{\pi}{6}\right)\)
2 \(\left(2, \frac{11 \pi}{6}\right)\)
3 \(\left(2, \frac{5 \pi}{6}\right)\)
4 \(\left(2, \frac{\pi}{3}\right)\)
Co-Ordinate system

88412 If the point \(A(5, k), B(-3,1)\) and \(C(-7,-2)\) are collinear, then \(k=\)

1 \(\frac{1}{7}\)
2 7
3 -7
4 \(\frac{-1}{7}\)
Co-Ordinate system

88413 The Cartesian co-ordinates of the point whose polar co-ordinates are \(\left(\frac{1}{\mathbf{2}}, 120^{\circ}\right)\) are

1 \(\left(\frac{-1}{4}, \frac{-\sqrt{3}}{4}\right)\)
2 \(\left(\frac{1}{4}, \frac{\sqrt{3}}{4}\right)\)
3 \(\left(\frac{-1}{4}, \frac{\sqrt{3}}{4}\right)\)
4 \(\left(\frac{1}{4}, \frac{-\sqrt{3}}{4}\right)\)
Co-Ordinate system

88414 A normal to the curve \(2 x^{2}-y^{2}=14\) at the point \(\left(x_{1}, y_{1}\right)\) is parallel to the straight line \(x+3 y=4\). Then the point \(\left(\mathrm{x}_{1}, \mathrm{y}_{\mathbf{1}}\right)\) is

1 \((3,3)\)
2 \((-4,-2)\)
3 \((2,3)\)
4 \((3,2)\)
Co-Ordinate system

88410 \((-\sqrt{2}, \sqrt{2})\) are Cartesian co-ordinates of the point, then its polar co-ordinates are

1 \(\left(4, \frac{5 \pi}{4}\right)\)
2 \(\left(3, \frac{7 \pi}{4}\right)\)
3 \(\left(1, \frac{4 \pi}{3}\right)\)
4 \(\left(2, \frac{3 \pi}{4}\right)\)
Co-Ordinate system

88411 The polar coordinates of \(P\) are \(\left(2, \frac{\pi}{6}\right)\). If \(Q\) is the image of \(P\) about the \(X\)-axis, then the polar coordinates of \(Q\) are

1 \(\left(2, \frac{\pi}{6}\right)\)
2 \(\left(2, \frac{11 \pi}{6}\right)\)
3 \(\left(2, \frac{5 \pi}{6}\right)\)
4 \(\left(2, \frac{\pi}{3}\right)\)
Co-Ordinate system

88412 If the point \(A(5, k), B(-3,1)\) and \(C(-7,-2)\) are collinear, then \(k=\)

1 \(\frac{1}{7}\)
2 7
3 -7
4 \(\frac{-1}{7}\)
Co-Ordinate system

88413 The Cartesian co-ordinates of the point whose polar co-ordinates are \(\left(\frac{1}{\mathbf{2}}, 120^{\circ}\right)\) are

1 \(\left(\frac{-1}{4}, \frac{-\sqrt{3}}{4}\right)\)
2 \(\left(\frac{1}{4}, \frac{\sqrt{3}}{4}\right)\)
3 \(\left(\frac{-1}{4}, \frac{\sqrt{3}}{4}\right)\)
4 \(\left(\frac{1}{4}, \frac{-\sqrt{3}}{4}\right)\)
Co-Ordinate system

88414 A normal to the curve \(2 x^{2}-y^{2}=14\) at the point \(\left(x_{1}, y_{1}\right)\) is parallel to the straight line \(x+3 y=4\). Then the point \(\left(\mathrm{x}_{1}, \mathrm{y}_{\mathbf{1}}\right)\) is

1 \((3,3)\)
2 \((-4,-2)\)
3 \((2,3)\)
4 \((3,2)\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Co-Ordinate system

88410 \((-\sqrt{2}, \sqrt{2})\) are Cartesian co-ordinates of the point, then its polar co-ordinates are

1 \(\left(4, \frac{5 \pi}{4}\right)\)
2 \(\left(3, \frac{7 \pi}{4}\right)\)
3 \(\left(1, \frac{4 \pi}{3}\right)\)
4 \(\left(2, \frac{3 \pi}{4}\right)\)
Co-Ordinate system

88411 The polar coordinates of \(P\) are \(\left(2, \frac{\pi}{6}\right)\). If \(Q\) is the image of \(P\) about the \(X\)-axis, then the polar coordinates of \(Q\) are

1 \(\left(2, \frac{\pi}{6}\right)\)
2 \(\left(2, \frac{11 \pi}{6}\right)\)
3 \(\left(2, \frac{5 \pi}{6}\right)\)
4 \(\left(2, \frac{\pi}{3}\right)\)
Co-Ordinate system

88412 If the point \(A(5, k), B(-3,1)\) and \(C(-7,-2)\) are collinear, then \(k=\)

1 \(\frac{1}{7}\)
2 7
3 -7
4 \(\frac{-1}{7}\)
Co-Ordinate system

88413 The Cartesian co-ordinates of the point whose polar co-ordinates are \(\left(\frac{1}{\mathbf{2}}, 120^{\circ}\right)\) are

1 \(\left(\frac{-1}{4}, \frac{-\sqrt{3}}{4}\right)\)
2 \(\left(\frac{1}{4}, \frac{\sqrt{3}}{4}\right)\)
3 \(\left(\frac{-1}{4}, \frac{\sqrt{3}}{4}\right)\)
4 \(\left(\frac{1}{4}, \frac{-\sqrt{3}}{4}\right)\)
Co-Ordinate system

88414 A normal to the curve \(2 x^{2}-y^{2}=14\) at the point \(\left(x_{1}, y_{1}\right)\) is parallel to the straight line \(x+3 y=4\). Then the point \(\left(\mathrm{x}_{1}, \mathrm{y}_{\mathbf{1}}\right)\) is

1 \((3,3)\)
2 \((-4,-2)\)
3 \((2,3)\)
4 \((3,2)\)
Co-Ordinate system

88410 \((-\sqrt{2}, \sqrt{2})\) are Cartesian co-ordinates of the point, then its polar co-ordinates are

1 \(\left(4, \frac{5 \pi}{4}\right)\)
2 \(\left(3, \frac{7 \pi}{4}\right)\)
3 \(\left(1, \frac{4 \pi}{3}\right)\)
4 \(\left(2, \frac{3 \pi}{4}\right)\)
Co-Ordinate system

88411 The polar coordinates of \(P\) are \(\left(2, \frac{\pi}{6}\right)\). If \(Q\) is the image of \(P\) about the \(X\)-axis, then the polar coordinates of \(Q\) are

1 \(\left(2, \frac{\pi}{6}\right)\)
2 \(\left(2, \frac{11 \pi}{6}\right)\)
3 \(\left(2, \frac{5 \pi}{6}\right)\)
4 \(\left(2, \frac{\pi}{3}\right)\)
Co-Ordinate system

88412 If the point \(A(5, k), B(-3,1)\) and \(C(-7,-2)\) are collinear, then \(k=\)

1 \(\frac{1}{7}\)
2 7
3 -7
4 \(\frac{-1}{7}\)
Co-Ordinate system

88413 The Cartesian co-ordinates of the point whose polar co-ordinates are \(\left(\frac{1}{\mathbf{2}}, 120^{\circ}\right)\) are

1 \(\left(\frac{-1}{4}, \frac{-\sqrt{3}}{4}\right)\)
2 \(\left(\frac{1}{4}, \frac{\sqrt{3}}{4}\right)\)
3 \(\left(\frac{-1}{4}, \frac{\sqrt{3}}{4}\right)\)
4 \(\left(\frac{1}{4}, \frac{-\sqrt{3}}{4}\right)\)
Co-Ordinate system

88414 A normal to the curve \(2 x^{2}-y^{2}=14\) at the point \(\left(x_{1}, y_{1}\right)\) is parallel to the straight line \(x+3 y=4\). Then the point \(\left(\mathrm{x}_{1}, \mathrm{y}_{\mathbf{1}}\right)\) is

1 \((3,3)\)
2 \((-4,-2)\)
3 \((2,3)\)
4 \((3,2)\)