Slope of a Line
Co-Ordinate system

88367 If \(\mathbf{m}\) is the slope of one of the lines represented by \(a x^{2}+2 h x y+b y^{2}=0\), then \((h+b m)^{2}=\)

1 \((a-b)^{2}\)
2 \((a+b)^{2}\)
3 \(\mathrm{h}^{2}-\mathrm{ab}\)
4 \(\mathrm{h}^{2}+\mathrm{ab}\)
Co-Ordinate system

88369 If the intercepts made on the line \(y=m x\) by lines \(y=2\) and \(y=6\) is less than 5 , then the range of values of \(m\) is :

1 \((-\infty,-4 / 3) \cup(4 / 3, \infty)\)
2 \((-4 / 3,4 / 3)\)
3 \((-3 / 4,4 / 3)\)
4 None of these
Co-Ordinate system

88370 What is the equation of the curve through the point \((1,1)\) and whose slope is \(\frac{2 a y}{x(y-a)}\) ?

1 \(y^{a} x^{2 a}=e^{y-1}\)
2 \(y^{a} x^{x}=e^{y}\)
3 \(\mathrm{y}^{2 \mathrm{a}} \mathrm{x}^{\mathrm{a}}=\mathrm{e}^{\mathrm{y}-1}\)
4 \(\mathrm{y}^{2 \mathrm{a}} \mathrm{x}^{\mathrm{a}}=\mathrm{e}^{\mathrm{y}}\)
Co-Ordinate system

88371 If the lines joining the origin to the intersection of the line \(y=m x+2\) and the circle \(x^{2}+y^{2}=1\) are at right angles, then

1 \(\mathrm{m}=\sqrt{3}\)
2 \(\mathrm{m}= \pm \sqrt{7}\)
3 \(\mathrm{m}=\sqrt{1}\)
4 \(\mathrm{m}=\sqrt{5}\)
Co-Ordinate system

88367 If \(\mathbf{m}\) is the slope of one of the lines represented by \(a x^{2}+2 h x y+b y^{2}=0\), then \((h+b m)^{2}=\)

1 \((a-b)^{2}\)
2 \((a+b)^{2}\)
3 \(\mathrm{h}^{2}-\mathrm{ab}\)
4 \(\mathrm{h}^{2}+\mathrm{ab}\)
Co-Ordinate system

88369 If the intercepts made on the line \(y=m x\) by lines \(y=2\) and \(y=6\) is less than 5 , then the range of values of \(m\) is :

1 \((-\infty,-4 / 3) \cup(4 / 3, \infty)\)
2 \((-4 / 3,4 / 3)\)
3 \((-3 / 4,4 / 3)\)
4 None of these
Co-Ordinate system

88370 What is the equation of the curve through the point \((1,1)\) and whose slope is \(\frac{2 a y}{x(y-a)}\) ?

1 \(y^{a} x^{2 a}=e^{y-1}\)
2 \(y^{a} x^{x}=e^{y}\)
3 \(\mathrm{y}^{2 \mathrm{a}} \mathrm{x}^{\mathrm{a}}=\mathrm{e}^{\mathrm{y}-1}\)
4 \(\mathrm{y}^{2 \mathrm{a}} \mathrm{x}^{\mathrm{a}}=\mathrm{e}^{\mathrm{y}}\)
Co-Ordinate system

88371 If the lines joining the origin to the intersection of the line \(y=m x+2\) and the circle \(x^{2}+y^{2}=1\) are at right angles, then

1 \(\mathrm{m}=\sqrt{3}\)
2 \(\mathrm{m}= \pm \sqrt{7}\)
3 \(\mathrm{m}=\sqrt{1}\)
4 \(\mathrm{m}=\sqrt{5}\)
Co-Ordinate system

88367 If \(\mathbf{m}\) is the slope of one of the lines represented by \(a x^{2}+2 h x y+b y^{2}=0\), then \((h+b m)^{2}=\)

1 \((a-b)^{2}\)
2 \((a+b)^{2}\)
3 \(\mathrm{h}^{2}-\mathrm{ab}\)
4 \(\mathrm{h}^{2}+\mathrm{ab}\)
Co-Ordinate system

88369 If the intercepts made on the line \(y=m x\) by lines \(y=2\) and \(y=6\) is less than 5 , then the range of values of \(m\) is :

1 \((-\infty,-4 / 3) \cup(4 / 3, \infty)\)
2 \((-4 / 3,4 / 3)\)
3 \((-3 / 4,4 / 3)\)
4 None of these
Co-Ordinate system

88370 What is the equation of the curve through the point \((1,1)\) and whose slope is \(\frac{2 a y}{x(y-a)}\) ?

1 \(y^{a} x^{2 a}=e^{y-1}\)
2 \(y^{a} x^{x}=e^{y}\)
3 \(\mathrm{y}^{2 \mathrm{a}} \mathrm{x}^{\mathrm{a}}=\mathrm{e}^{\mathrm{y}-1}\)
4 \(\mathrm{y}^{2 \mathrm{a}} \mathrm{x}^{\mathrm{a}}=\mathrm{e}^{\mathrm{y}}\)
Co-Ordinate system

88371 If the lines joining the origin to the intersection of the line \(y=m x+2\) and the circle \(x^{2}+y^{2}=1\) are at right angles, then

1 \(\mathrm{m}=\sqrt{3}\)
2 \(\mathrm{m}= \pm \sqrt{7}\)
3 \(\mathrm{m}=\sqrt{1}\)
4 \(\mathrm{m}=\sqrt{5}\)
Co-Ordinate system

88367 If \(\mathbf{m}\) is the slope of one of the lines represented by \(a x^{2}+2 h x y+b y^{2}=0\), then \((h+b m)^{2}=\)

1 \((a-b)^{2}\)
2 \((a+b)^{2}\)
3 \(\mathrm{h}^{2}-\mathrm{ab}\)
4 \(\mathrm{h}^{2}+\mathrm{ab}\)
Co-Ordinate system

88369 If the intercepts made on the line \(y=m x\) by lines \(y=2\) and \(y=6\) is less than 5 , then the range of values of \(m\) is :

1 \((-\infty,-4 / 3) \cup(4 / 3, \infty)\)
2 \((-4 / 3,4 / 3)\)
3 \((-3 / 4,4 / 3)\)
4 None of these
Co-Ordinate system

88370 What is the equation of the curve through the point \((1,1)\) and whose slope is \(\frac{2 a y}{x(y-a)}\) ?

1 \(y^{a} x^{2 a}=e^{y-1}\)
2 \(y^{a} x^{x}=e^{y}\)
3 \(\mathrm{y}^{2 \mathrm{a}} \mathrm{x}^{\mathrm{a}}=\mathrm{e}^{\mathrm{y}-1}\)
4 \(\mathrm{y}^{2 \mathrm{a}} \mathrm{x}^{\mathrm{a}}=\mathrm{e}^{\mathrm{y}}\)
Co-Ordinate system

88371 If the lines joining the origin to the intersection of the line \(y=m x+2\) and the circle \(x^{2}+y^{2}=1\) are at right angles, then

1 \(\mathrm{m}=\sqrt{3}\)
2 \(\mathrm{m}= \pm \sqrt{7}\)
3 \(\mathrm{m}=\sqrt{1}\)
4 \(\mathrm{m}=\sqrt{5}\)