Explanation:
(C) : Given,
The equation of pair of the straight lines is
\(\mathrm{x}^{2}-2 \mathrm{cxy}-7 \mathrm{y}^{2}=0\)
We know that,
\(a x^{2}+2 h x y+b y^{2}=0\)
(ii)
is the standard equation
Now,
Comparing equation (i) and (ii)
\(\mathrm{a}=1, \mathrm{~h}=-\mathrm{c}, \mathrm{b}=-7\)
Now, Let \(\mathrm{m}_{1}\) and \(\mathrm{m}_{2}\) be the slope of the lines represented by \(x^{2}-2\) cxy \(-7 y^{2}=0\)
\(\therefore \quad \mathrm{m}_{1}+\mathrm{m}_{2}=\frac{-2 \mathrm{~h}}{\mathrm{~b}}=\frac{-2 \mathrm{c}}{7}\)
\(\mathrm{m}_{1} \mathrm{~m}_{2}=\frac{\mathrm{a}}{\mathrm{b}}=\frac{-1}{7}\)
\(\therefore \quad \mathrm{m}_{1}+\mathrm{m}_{2}=4 \mathrm{~m}_{1} \mathrm{~m}_{2}\)
\(\frac{-2 \mathrm{c}}{7}=4\left(\frac{-1}{7}\right)\)
\(\mathrm{C}=2\)