Co-ordinates of Different Centers of Triangles
Co-Ordinate system

88288 The equation of the plane meets the axes in \(\mathrm{A}\), and \(C\) such that centroid of the \(\triangle \mathrm{ABC}\) is \(\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3},\right)\) is given by

1 \(x+y+z=1\)
2 \(x+y+z=2\)
3 \(\frac{x}{3}+\frac{y}{3}+\frac{z}{3}=3\)
4 \(x+y+z=\frac{1}{3}\)
Co-Ordinate system

88289 If \(A(-1,3,2), B(2,3,5)\) and \(C(3,5,-2)\) are vertices of a \(\triangle \mathrm{ABC}\), then angles of are

1 \(\angle \mathrm{A}=90^{\circ}, \angle \mathrm{B}=30^{\circ}, \angle \mathrm{C}=60^{\circ}\)
2 \(\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}\)
3 \(\angle \mathrm{A}=\angle \mathrm{B}=45^{\circ}, \angle \mathrm{C}=90^{\circ}\)
4 None of the above
Co-Ordinate system

88290 If \(G\) and \(G^{\prime}\) are respectively centroid of \(\triangle A B C\) and \(\Delta A^{\prime} B^{\prime} C^{\prime}\), then \(A A^{\prime}+B B^{\prime}+C^{\prime}\) is equal to

1 \(2 \mathrm{GG}^{\prime}\)
2 \(3 \mathrm{GG}^{\prime}\)
3 \(\frac{2}{3} \mathrm{GG}^{\prime}\)
4 \(\frac{1}{3} \mathrm{GG}^{\prime}\)
Co-Ordinate system

88291 The orthocenter of the triangle formed by the
line \(x=2, y=3\) and \(3 x+2 y=6\) at the point

1 \((2,0)\)
2 \((2,3)\)
3 \((0,3)\)
4 None of these
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Co-Ordinate system

88288 The equation of the plane meets the axes in \(\mathrm{A}\), and \(C\) such that centroid of the \(\triangle \mathrm{ABC}\) is \(\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3},\right)\) is given by

1 \(x+y+z=1\)
2 \(x+y+z=2\)
3 \(\frac{x}{3}+\frac{y}{3}+\frac{z}{3}=3\)
4 \(x+y+z=\frac{1}{3}\)
Co-Ordinate system

88289 If \(A(-1,3,2), B(2,3,5)\) and \(C(3,5,-2)\) are vertices of a \(\triangle \mathrm{ABC}\), then angles of are

1 \(\angle \mathrm{A}=90^{\circ}, \angle \mathrm{B}=30^{\circ}, \angle \mathrm{C}=60^{\circ}\)
2 \(\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}\)
3 \(\angle \mathrm{A}=\angle \mathrm{B}=45^{\circ}, \angle \mathrm{C}=90^{\circ}\)
4 None of the above
Co-Ordinate system

88290 If \(G\) and \(G^{\prime}\) are respectively centroid of \(\triangle A B C\) and \(\Delta A^{\prime} B^{\prime} C^{\prime}\), then \(A A^{\prime}+B B^{\prime}+C^{\prime}\) is equal to

1 \(2 \mathrm{GG}^{\prime}\)
2 \(3 \mathrm{GG}^{\prime}\)
3 \(\frac{2}{3} \mathrm{GG}^{\prime}\)
4 \(\frac{1}{3} \mathrm{GG}^{\prime}\)
Co-Ordinate system

88291 The orthocenter of the triangle formed by the
line \(x=2, y=3\) and \(3 x+2 y=6\) at the point

1 \((2,0)\)
2 \((2,3)\)
3 \((0,3)\)
4 None of these
Co-Ordinate system

88288 The equation of the plane meets the axes in \(\mathrm{A}\), and \(C\) such that centroid of the \(\triangle \mathrm{ABC}\) is \(\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3},\right)\) is given by

1 \(x+y+z=1\)
2 \(x+y+z=2\)
3 \(\frac{x}{3}+\frac{y}{3}+\frac{z}{3}=3\)
4 \(x+y+z=\frac{1}{3}\)
Co-Ordinate system

88289 If \(A(-1,3,2), B(2,3,5)\) and \(C(3,5,-2)\) are vertices of a \(\triangle \mathrm{ABC}\), then angles of are

1 \(\angle \mathrm{A}=90^{\circ}, \angle \mathrm{B}=30^{\circ}, \angle \mathrm{C}=60^{\circ}\)
2 \(\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}\)
3 \(\angle \mathrm{A}=\angle \mathrm{B}=45^{\circ}, \angle \mathrm{C}=90^{\circ}\)
4 None of the above
Co-Ordinate system

88290 If \(G\) and \(G^{\prime}\) are respectively centroid of \(\triangle A B C\) and \(\Delta A^{\prime} B^{\prime} C^{\prime}\), then \(A A^{\prime}+B B^{\prime}+C^{\prime}\) is equal to

1 \(2 \mathrm{GG}^{\prime}\)
2 \(3 \mathrm{GG}^{\prime}\)
3 \(\frac{2}{3} \mathrm{GG}^{\prime}\)
4 \(\frac{1}{3} \mathrm{GG}^{\prime}\)
Co-Ordinate system

88291 The orthocenter of the triangle formed by the
line \(x=2, y=3\) and \(3 x+2 y=6\) at the point

1 \((2,0)\)
2 \((2,3)\)
3 \((0,3)\)
4 None of these
Co-Ordinate system

88288 The equation of the plane meets the axes in \(\mathrm{A}\), and \(C\) such that centroid of the \(\triangle \mathrm{ABC}\) is \(\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3},\right)\) is given by

1 \(x+y+z=1\)
2 \(x+y+z=2\)
3 \(\frac{x}{3}+\frac{y}{3}+\frac{z}{3}=3\)
4 \(x+y+z=\frac{1}{3}\)
Co-Ordinate system

88289 If \(A(-1,3,2), B(2,3,5)\) and \(C(3,5,-2)\) are vertices of a \(\triangle \mathrm{ABC}\), then angles of are

1 \(\angle \mathrm{A}=90^{\circ}, \angle \mathrm{B}=30^{\circ}, \angle \mathrm{C}=60^{\circ}\)
2 \(\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}\)
3 \(\angle \mathrm{A}=\angle \mathrm{B}=45^{\circ}, \angle \mathrm{C}=90^{\circ}\)
4 None of the above
Co-Ordinate system

88290 If \(G\) and \(G^{\prime}\) are respectively centroid of \(\triangle A B C\) and \(\Delta A^{\prime} B^{\prime} C^{\prime}\), then \(A A^{\prime}+B B^{\prime}+C^{\prime}\) is equal to

1 \(2 \mathrm{GG}^{\prime}\)
2 \(3 \mathrm{GG}^{\prime}\)
3 \(\frac{2}{3} \mathrm{GG}^{\prime}\)
4 \(\frac{1}{3} \mathrm{GG}^{\prime}\)
Co-Ordinate system

88291 The orthocenter of the triangle formed by the
line \(x=2, y=3\) and \(3 x+2 y=6\) at the point

1 \((2,0)\)
2 \((2,3)\)
3 \((0,3)\)
4 None of these
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here