88201
If \(P_{1}\) and \(P_{2}\) be the length of perpendiculars from the origin upon the straight lines \(x \sec \theta+y \operatorname{cosec} \theta=a\) and
\(x \cos \theta-y \sin \theta=a \cos 2 \theta\) respectively, then the value of \(4 \mathrm{P}_{1}{ }^{2}+\mathrm{P}_{2}{ }^{2}\).
88201
If \(P_{1}\) and \(P_{2}\) be the length of perpendiculars from the origin upon the straight lines \(x \sec \theta+y \operatorname{cosec} \theta=a\) and
\(x \cos \theta-y \sin \theta=a \cos 2 \theta\) respectively, then the value of \(4 \mathrm{P}_{1}{ }^{2}+\mathrm{P}_{2}{ }^{2}\).
88201
If \(P_{1}\) and \(P_{2}\) be the length of perpendiculars from the origin upon the straight lines \(x \sec \theta+y \operatorname{cosec} \theta=a\) and
\(x \cos \theta-y \sin \theta=a \cos 2 \theta\) respectively, then the value of \(4 \mathrm{P}_{1}{ }^{2}+\mathrm{P}_{2}{ }^{2}\).
88201
If \(P_{1}\) and \(P_{2}\) be the length of perpendiculars from the origin upon the straight lines \(x \sec \theta+y \operatorname{cosec} \theta=a\) and
\(x \cos \theta-y \sin \theta=a \cos 2 \theta\) respectively, then the value of \(4 \mathrm{P}_{1}{ }^{2}+\mathrm{P}_{2}{ }^{2}\).
88201
If \(P_{1}\) and \(P_{2}\) be the length of perpendiculars from the origin upon the straight lines \(x \sec \theta+y \operatorname{cosec} \theta=a\) and
\(x \cos \theta-y \sin \theta=a \cos 2 \theta\) respectively, then the value of \(4 \mathrm{P}_{1}{ }^{2}+\mathrm{P}_{2}{ }^{2}\).