88172 If \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathrm{b}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{c}}=\mathbf{2} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\lambda \hat{\mathbf{k}}\) are coplanar, then \(\lambda=\)
88173 If \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathrm{b}}=4 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{c}}=\hat{\mathbf{i}}+\alpha \hat{\mathbf{j}}+\beta \hat{\mathbf{k}}\) are linearly dependent vectors and \(|\overrightarrow{\mathbf{c}}|=\sqrt{3}\), then
88175 Let \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}-\hat{\mathbf{k}}, \quad \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+(\mathbf{1}-\mathbf{x}) \hat{\mathbf{k}} \quad\) and \(\overrightarrow{\mathbf{c}}=\mathbf{y i}+x \hat{j}+(1+x-y) \hat{k}\). Then \([\vec{a}, \vec{b}, \vec{c}]\) depends on
88172 If \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathrm{b}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{c}}=\mathbf{2} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\lambda \hat{\mathbf{k}}\) are coplanar, then \(\lambda=\)
88173 If \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathrm{b}}=4 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{c}}=\hat{\mathbf{i}}+\alpha \hat{\mathbf{j}}+\beta \hat{\mathbf{k}}\) are linearly dependent vectors and \(|\overrightarrow{\mathbf{c}}|=\sqrt{3}\), then
88175 Let \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}-\hat{\mathbf{k}}, \quad \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+(\mathbf{1}-\mathbf{x}) \hat{\mathbf{k}} \quad\) and \(\overrightarrow{\mathbf{c}}=\mathbf{y i}+x \hat{j}+(1+x-y) \hat{k}\). Then \([\vec{a}, \vec{b}, \vec{c}]\) depends on
88172 If \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathrm{b}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{c}}=\mathbf{2} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\lambda \hat{\mathbf{k}}\) are coplanar, then \(\lambda=\)
88173 If \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathrm{b}}=4 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{c}}=\hat{\mathbf{i}}+\alpha \hat{\mathbf{j}}+\beta \hat{\mathbf{k}}\) are linearly dependent vectors and \(|\overrightarrow{\mathbf{c}}|=\sqrt{3}\), then
88175 Let \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}-\hat{\mathbf{k}}, \quad \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+(\mathbf{1}-\mathbf{x}) \hat{\mathbf{k}} \quad\) and \(\overrightarrow{\mathbf{c}}=\mathbf{y i}+x \hat{j}+(1+x-y) \hat{k}\). Then \([\vec{a}, \vec{b}, \vec{c}]\) depends on
88172 If \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathrm{b}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{c}}=\mathbf{2} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\lambda \hat{\mathbf{k}}\) are coplanar, then \(\lambda=\)
88173 If \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathrm{b}}=4 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{c}}=\hat{\mathbf{i}}+\alpha \hat{\mathbf{j}}+\beta \hat{\mathbf{k}}\) are linearly dependent vectors and \(|\overrightarrow{\mathbf{c}}|=\sqrt{3}\), then
88175 Let \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}-\hat{\mathbf{k}}, \quad \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+(\mathbf{1}-\mathbf{x}) \hat{\mathbf{k}} \quad\) and \(\overrightarrow{\mathbf{c}}=\mathbf{y i}+x \hat{j}+(1+x-y) \hat{k}\). Then \([\vec{a}, \vec{b}, \vec{c}]\) depends on
88172 If \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathrm{b}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{c}}=\mathbf{2} \hat{\mathbf{i}}+\hat{\mathbf{j}}-\lambda \hat{\mathbf{k}}\) are coplanar, then \(\lambda=\)
88173 If \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathrm{b}}=4 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{c}}=\hat{\mathbf{i}}+\alpha \hat{\mathbf{j}}+\beta \hat{\mathbf{k}}\) are linearly dependent vectors and \(|\overrightarrow{\mathbf{c}}|=\sqrt{3}\), then
88175 Let \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}-\hat{\mathbf{k}}, \quad \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+(\mathbf{1}-\mathbf{x}) \hat{\mathbf{k}} \quad\) and \(\overrightarrow{\mathbf{c}}=\mathbf{y i}+x \hat{j}+(1+x-y) \hat{k}\). Then \([\vec{a}, \vec{b}, \vec{c}]\) depends on