Scalar (dot) Product of Vector
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

88020 If \(\mathbf{u}=2 \hat{i}+2 \hat{j}-\hat{k}\) and \(v=6 \hat{i}-3 \hat{j}+2 \hat{k}\), then the unit vector perpendicular to \(u\) and \(v\) is

1 \(\hat{\mathrm{i}}-10 \hat{\mathrm{j}}-18 \hat{\mathrm{k}}\)
2 \(\frac{1}{\sqrt{17}}\left(\frac{1}{5} \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-\frac{18}{5} \hat{\mathrm{k}}\right)\)
3 \(\frac{1}{\sqrt{473}}(7 \hat{\mathrm{i}}-10 \hat{\mathrm{j}}-8 \hat{\mathrm{k}})\)
4 None of the above
Vector Algebra

88021 If \(a=\frac{\hat{i}-2 \hat{j}}{\sqrt{5}}\) and \(b=\frac{2 \hat{i}+\hat{j}+3 \hat{k}}{\sqrt{14}}\) are vectors in space, then the value of \((2 a+b) \cdot[(a \times b) \times(a-\) 2b)] is

1 0
2 1
3 5
4 4
Vector Algebra

88023 A unit vector \(\vec{a}\) makes angles \(\pi / 4\) with \(\hat{\mathbf{i}}, \pi / 3\) with \(\hat{\mathbf{j}}\) and an acute angle \(\theta\) with \(\hat{\mathbf{k}}\), then \(\boldsymbol{\theta}\) and \(\vec{a}\) are

1 \(\frac{\pi}{3}, \frac{\sqrt{2} \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}}{2}\)
2 \(\frac{\pi}{3}, \frac{\sqrt{2} \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}}{2}\)
3 \(\frac{\pi}{3}, \frac{\sqrt{2} \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}}{2}\)
4 \(\frac{\pi}{3}, \frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}}{2}\)
Vector Algebra

88024 If \(a=3 \hat{i}-4 \hat{j}+5 \hat{k}, b=\hat{i}+\hat{j}+\hat{k}\) and \(c=-2 \hat{i}+3 \hat{j}-5 \hat{k}\) and if [.] is the least integer function, then \([a+b+c]\) is equal to

1 1
2 2
3 3
4 0
Vector Algebra

88020 If \(\mathbf{u}=2 \hat{i}+2 \hat{j}-\hat{k}\) and \(v=6 \hat{i}-3 \hat{j}+2 \hat{k}\), then the unit vector perpendicular to \(u\) and \(v\) is

1 \(\hat{\mathrm{i}}-10 \hat{\mathrm{j}}-18 \hat{\mathrm{k}}\)
2 \(\frac{1}{\sqrt{17}}\left(\frac{1}{5} \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-\frac{18}{5} \hat{\mathrm{k}}\right)\)
3 \(\frac{1}{\sqrt{473}}(7 \hat{\mathrm{i}}-10 \hat{\mathrm{j}}-8 \hat{\mathrm{k}})\)
4 None of the above
Vector Algebra

88021 If \(a=\frac{\hat{i}-2 \hat{j}}{\sqrt{5}}\) and \(b=\frac{2 \hat{i}+\hat{j}+3 \hat{k}}{\sqrt{14}}\) are vectors in space, then the value of \((2 a+b) \cdot[(a \times b) \times(a-\) 2b)] is

1 0
2 1
3 5
4 4
Vector Algebra

88023 A unit vector \(\vec{a}\) makes angles \(\pi / 4\) with \(\hat{\mathbf{i}}, \pi / 3\) with \(\hat{\mathbf{j}}\) and an acute angle \(\theta\) with \(\hat{\mathbf{k}}\), then \(\boldsymbol{\theta}\) and \(\vec{a}\) are

1 \(\frac{\pi}{3}, \frac{\sqrt{2} \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}}{2}\)
2 \(\frac{\pi}{3}, \frac{\sqrt{2} \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}}{2}\)
3 \(\frac{\pi}{3}, \frac{\sqrt{2} \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}}{2}\)
4 \(\frac{\pi}{3}, \frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}}{2}\)
Vector Algebra

88024 If \(a=3 \hat{i}-4 \hat{j}+5 \hat{k}, b=\hat{i}+\hat{j}+\hat{k}\) and \(c=-2 \hat{i}+3 \hat{j}-5 \hat{k}\) and if [.] is the least integer function, then \([a+b+c]\) is equal to

1 1
2 2
3 3
4 0
Vector Algebra

88020 If \(\mathbf{u}=2 \hat{i}+2 \hat{j}-\hat{k}\) and \(v=6 \hat{i}-3 \hat{j}+2 \hat{k}\), then the unit vector perpendicular to \(u\) and \(v\) is

1 \(\hat{\mathrm{i}}-10 \hat{\mathrm{j}}-18 \hat{\mathrm{k}}\)
2 \(\frac{1}{\sqrt{17}}\left(\frac{1}{5} \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-\frac{18}{5} \hat{\mathrm{k}}\right)\)
3 \(\frac{1}{\sqrt{473}}(7 \hat{\mathrm{i}}-10 \hat{\mathrm{j}}-8 \hat{\mathrm{k}})\)
4 None of the above
Vector Algebra

88021 If \(a=\frac{\hat{i}-2 \hat{j}}{\sqrt{5}}\) and \(b=\frac{2 \hat{i}+\hat{j}+3 \hat{k}}{\sqrt{14}}\) are vectors in space, then the value of \((2 a+b) \cdot[(a \times b) \times(a-\) 2b)] is

1 0
2 1
3 5
4 4
Vector Algebra

88023 A unit vector \(\vec{a}\) makes angles \(\pi / 4\) with \(\hat{\mathbf{i}}, \pi / 3\) with \(\hat{\mathbf{j}}\) and an acute angle \(\theta\) with \(\hat{\mathbf{k}}\), then \(\boldsymbol{\theta}\) and \(\vec{a}\) are

1 \(\frac{\pi}{3}, \frac{\sqrt{2} \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}}{2}\)
2 \(\frac{\pi}{3}, \frac{\sqrt{2} \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}}{2}\)
3 \(\frac{\pi}{3}, \frac{\sqrt{2} \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}}{2}\)
4 \(\frac{\pi}{3}, \frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}}{2}\)
Vector Algebra

88024 If \(a=3 \hat{i}-4 \hat{j}+5 \hat{k}, b=\hat{i}+\hat{j}+\hat{k}\) and \(c=-2 \hat{i}+3 \hat{j}-5 \hat{k}\) and if [.] is the least integer function, then \([a+b+c]\) is equal to

1 1
2 2
3 3
4 0
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

88020 If \(\mathbf{u}=2 \hat{i}+2 \hat{j}-\hat{k}\) and \(v=6 \hat{i}-3 \hat{j}+2 \hat{k}\), then the unit vector perpendicular to \(u\) and \(v\) is

1 \(\hat{\mathrm{i}}-10 \hat{\mathrm{j}}-18 \hat{\mathrm{k}}\)
2 \(\frac{1}{\sqrt{17}}\left(\frac{1}{5} \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-\frac{18}{5} \hat{\mathrm{k}}\right)\)
3 \(\frac{1}{\sqrt{473}}(7 \hat{\mathrm{i}}-10 \hat{\mathrm{j}}-8 \hat{\mathrm{k}})\)
4 None of the above
Vector Algebra

88021 If \(a=\frac{\hat{i}-2 \hat{j}}{\sqrt{5}}\) and \(b=\frac{2 \hat{i}+\hat{j}+3 \hat{k}}{\sqrt{14}}\) are vectors in space, then the value of \((2 a+b) \cdot[(a \times b) \times(a-\) 2b)] is

1 0
2 1
3 5
4 4
Vector Algebra

88023 A unit vector \(\vec{a}\) makes angles \(\pi / 4\) with \(\hat{\mathbf{i}}, \pi / 3\) with \(\hat{\mathbf{j}}\) and an acute angle \(\theta\) with \(\hat{\mathbf{k}}\), then \(\boldsymbol{\theta}\) and \(\vec{a}\) are

1 \(\frac{\pi}{3}, \frac{\sqrt{2} \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}}{2}\)
2 \(\frac{\pi}{3}, \frac{\sqrt{2} \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}}{2}\)
3 \(\frac{\pi}{3}, \frac{\sqrt{2} \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}}{2}\)
4 \(\frac{\pi}{3}, \frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}}{2}\)
Vector Algebra

88024 If \(a=3 \hat{i}-4 \hat{j}+5 \hat{k}, b=\hat{i}+\hat{j}+\hat{k}\) and \(c=-2 \hat{i}+3 \hat{j}-5 \hat{k}\) and if [.] is the least integer function, then \([a+b+c]\) is equal to

1 1
2 2
3 3
4 0