Scalar (dot) Product of Vector
Vector Algebra

87959 If \(\overrightarrow{\mathbf{c}}=3 \vec{a}-2 \vec{b}\), then the value of \(\vec{a} \cdot(\vec{b} \times \vec{c})=\)

1 1
2 0
3 -1
4 2
Vector Algebra

88097 If \(|a|=2,|b|=5\) and \(|a \times b|=8\), then \(|a . b|\) is equal to

1 6
2 4
3 3
4 5
Vector Algebra

87968 If \(\vec{a} \cdot \vec{b}=-|\vec{a}||\vec{b}|\), then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(90^{\circ}\)
2 \(60^{\circ}\)
3 \(45^{\circ}\)
4 \(180^{\circ}\)
Vector Algebra

88098 \(a, b, c\) are three vectors such that \(a+b+c=0\), \(|a|=1,|b|=2,|c|=3\), then \(a . b+b . c+c . a\) is equal to

1 0
2 -7
3 7
4 1
Vector Algebra

88119 For any vector \(\vec{a}\) the value of \((\overrightarrow{\mathbf{a}} \times \mathbf{i})^2+(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{j}})^2+(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{k}})^2\) is equal to

1 \(3 \vec{a}^2\)
2 \(\overrightarrow{\mathrm{a}}^2\)
3 \(2 \overrightarrow{\mathrm{a}}^2\)
4 \(4 \vec{a}^2\)
Vector Algebra

87959 If \(\overrightarrow{\mathbf{c}}=3 \vec{a}-2 \vec{b}\), then the value of \(\vec{a} \cdot(\vec{b} \times \vec{c})=\)

1 1
2 0
3 -1
4 2
Vector Algebra

88097 If \(|a|=2,|b|=5\) and \(|a \times b|=8\), then \(|a . b|\) is equal to

1 6
2 4
3 3
4 5
Vector Algebra

87968 If \(\vec{a} \cdot \vec{b}=-|\vec{a}||\vec{b}|\), then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(90^{\circ}\)
2 \(60^{\circ}\)
3 \(45^{\circ}\)
4 \(180^{\circ}\)
Vector Algebra

88098 \(a, b, c\) are three vectors such that \(a+b+c=0\), \(|a|=1,|b|=2,|c|=3\), then \(a . b+b . c+c . a\) is equal to

1 0
2 -7
3 7
4 1
Vector Algebra

88119 For any vector \(\vec{a}\) the value of \((\overrightarrow{\mathbf{a}} \times \mathbf{i})^2+(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{j}})^2+(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{k}})^2\) is equal to

1 \(3 \vec{a}^2\)
2 \(\overrightarrow{\mathrm{a}}^2\)
3 \(2 \overrightarrow{\mathrm{a}}^2\)
4 \(4 \vec{a}^2\)
Vector Algebra

87959 If \(\overrightarrow{\mathbf{c}}=3 \vec{a}-2 \vec{b}\), then the value of \(\vec{a} \cdot(\vec{b} \times \vec{c})=\)

1 1
2 0
3 -1
4 2
Vector Algebra

88097 If \(|a|=2,|b|=5\) and \(|a \times b|=8\), then \(|a . b|\) is equal to

1 6
2 4
3 3
4 5
Vector Algebra

87968 If \(\vec{a} \cdot \vec{b}=-|\vec{a}||\vec{b}|\), then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(90^{\circ}\)
2 \(60^{\circ}\)
3 \(45^{\circ}\)
4 \(180^{\circ}\)
Vector Algebra

88098 \(a, b, c\) are three vectors such that \(a+b+c=0\), \(|a|=1,|b|=2,|c|=3\), then \(a . b+b . c+c . a\) is equal to

1 0
2 -7
3 7
4 1
Vector Algebra

88119 For any vector \(\vec{a}\) the value of \((\overrightarrow{\mathbf{a}} \times \mathbf{i})^2+(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{j}})^2+(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{k}})^2\) is equal to

1 \(3 \vec{a}^2\)
2 \(\overrightarrow{\mathrm{a}}^2\)
3 \(2 \overrightarrow{\mathrm{a}}^2\)
4 \(4 \vec{a}^2\)
Vector Algebra

87959 If \(\overrightarrow{\mathbf{c}}=3 \vec{a}-2 \vec{b}\), then the value of \(\vec{a} \cdot(\vec{b} \times \vec{c})=\)

1 1
2 0
3 -1
4 2
Vector Algebra

88097 If \(|a|=2,|b|=5\) and \(|a \times b|=8\), then \(|a . b|\) is equal to

1 6
2 4
3 3
4 5
Vector Algebra

87968 If \(\vec{a} \cdot \vec{b}=-|\vec{a}||\vec{b}|\), then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(90^{\circ}\)
2 \(60^{\circ}\)
3 \(45^{\circ}\)
4 \(180^{\circ}\)
Vector Algebra

88098 \(a, b, c\) are three vectors such that \(a+b+c=0\), \(|a|=1,|b|=2,|c|=3\), then \(a . b+b . c+c . a\) is equal to

1 0
2 -7
3 7
4 1
Vector Algebra

88119 For any vector \(\vec{a}\) the value of \((\overrightarrow{\mathbf{a}} \times \mathbf{i})^2+(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{j}})^2+(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{k}})^2\) is equal to

1 \(3 \vec{a}^2\)
2 \(\overrightarrow{\mathrm{a}}^2\)
3 \(2 \overrightarrow{\mathrm{a}}^2\)
4 \(4 \vec{a}^2\)
Vector Algebra

87959 If \(\overrightarrow{\mathbf{c}}=3 \vec{a}-2 \vec{b}\), then the value of \(\vec{a} \cdot(\vec{b} \times \vec{c})=\)

1 1
2 0
3 -1
4 2
Vector Algebra

88097 If \(|a|=2,|b|=5\) and \(|a \times b|=8\), then \(|a . b|\) is equal to

1 6
2 4
3 3
4 5
Vector Algebra

87968 If \(\vec{a} \cdot \vec{b}=-|\vec{a}||\vec{b}|\), then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(90^{\circ}\)
2 \(60^{\circ}\)
3 \(45^{\circ}\)
4 \(180^{\circ}\)
Vector Algebra

88098 \(a, b, c\) are three vectors such that \(a+b+c=0\), \(|a|=1,|b|=2,|c|=3\), then \(a . b+b . c+c . a\) is equal to

1 0
2 -7
3 7
4 1
Vector Algebra

88119 For any vector \(\vec{a}\) the value of \((\overrightarrow{\mathbf{a}} \times \mathbf{i})^2+(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{j}})^2+(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{k}})^2\) is equal to

1 \(3 \vec{a}^2\)
2 \(\overrightarrow{\mathrm{a}}^2\)
3 \(2 \overrightarrow{\mathrm{a}}^2\)
4 \(4 \vec{a}^2\)