87695 If \(\alpha, \beta, \gamma\) are distinct real numbers are \(\alpha+\beta+\gamma\) \(\neq 0\), then the points with position vectors \(\alpha \hat{\mathbf{i}}+\beta \hat{\mathbf{j}}+\gamma \hat{k}, \beta \hat{\mathbf{i}}+\gamma \hat{j}+\alpha \hat{k}\) and \(\gamma \hat{i}+\alpha \hat{j}+\beta \hat{k}\) are
87695 If \(\alpha, \beta, \gamma\) are distinct real numbers are \(\alpha+\beta+\gamma\) \(\neq 0\), then the points with position vectors \(\alpha \hat{\mathbf{i}}+\beta \hat{\mathbf{j}}+\gamma \hat{k}, \beta \hat{\mathbf{i}}+\gamma \hat{j}+\alpha \hat{k}\) and \(\gamma \hat{i}+\alpha \hat{j}+\beta \hat{k}\) are
87695 If \(\alpha, \beta, \gamma\) are distinct real numbers are \(\alpha+\beta+\gamma\) \(\neq 0\), then the points with position vectors \(\alpha \hat{\mathbf{i}}+\beta \hat{\mathbf{j}}+\gamma \hat{k}, \beta \hat{\mathbf{i}}+\gamma \hat{j}+\alpha \hat{k}\) and \(\gamma \hat{i}+\alpha \hat{j}+\beta \hat{k}\) are
87695 If \(\alpha, \beta, \gamma\) are distinct real numbers are \(\alpha+\beta+\gamma\) \(\neq 0\), then the points with position vectors \(\alpha \hat{\mathbf{i}}+\beta \hat{\mathbf{j}}+\gamma \hat{k}, \beta \hat{\mathbf{i}}+\gamma \hat{j}+\alpha \hat{k}\) and \(\gamma \hat{i}+\alpha \hat{j}+\beta \hat{k}\) are