87688 The position vectors of \(A\) and \(B\) \(\operatorname{are}(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})\) and \(\left(\frac{1}{3} \hat{\mathbf{j}}+\frac{1}{3} \hat{\mathbf{k}}\right)\). If 'B' divides the line \(A C\) in the ratio \(2: 1\), then position vector of ' \(C\) ' is
87688 The position vectors of \(A\) and \(B\) \(\operatorname{are}(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})\) and \(\left(\frac{1}{3} \hat{\mathbf{j}}+\frac{1}{3} \hat{\mathbf{k}}\right)\). If 'B' divides the line \(A C\) in the ratio \(2: 1\), then position vector of ' \(C\) ' is
87688 The position vectors of \(A\) and \(B\) \(\operatorname{are}(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})\) and \(\left(\frac{1}{3} \hat{\mathbf{j}}+\frac{1}{3} \hat{\mathbf{k}}\right)\). If 'B' divides the line \(A C\) in the ratio \(2: 1\), then position vector of ' \(C\) ' is
87688 The position vectors of \(A\) and \(B\) \(\operatorname{are}(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})\) and \(\left(\frac{1}{3} \hat{\mathbf{j}}+\frac{1}{3} \hat{\mathbf{k}}\right)\). If 'B' divides the line \(A C\) in the ratio \(2: 1\), then position vector of ' \(C\) ' is